
RD-A151 770 IMPLEMENTATION AND ANALYSIS OF A MICROCOMPUTER BASED 1/2
RELATIONAL DATABASE SYSTEM(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. T 6 KEARNS

UNCLAS5SIFIED DEC 84 AFIT/GCS/ENG/84D-i2 F/G 9/2 N

L61O

11111112.8
1111:!25 1.4 Jl .

MICROCOPY RESOLUTION TEST CHART
NAJIONAt ALIRFAL ()F 'TANnARr; 1 A

REPRODUCED AT GOV"NtNT EXPENSE

In

IIV

~OF

0 IMPLEMENTATION AND ANALYSIS OF A
MICROCOMPUTER BASED RELATIONAL

DATABASE SYSTEM

THESIS

Timothy G. Kearnis
Captain, USAF

AFIT/GCS/ENG/84D- 12----- DTf C
APR

dtsIJ~ Is
- U

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

* AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

85 03 13 125

AFIT/GO S/ENG/84

i-IMPLEMENTATION AND ANALYSIS OF A
MICROCOMPUTER BASED RELATIONAL

DATABASE SYSTEM

THESIS

Timothy G. Kearns
Captain, USAF

AFIT/GCS/ENG/84D- 12 OW

7.

K Approved for public releasei distribution unlimited

AFIT/GCS/ENG/8D-12

IMPLEMENTATION AND ANALY2IS OF A

MICROCOMPUTER BASED RELATIONAL

DATABASE SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

'0 In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Cacpteission

For

AprvdfrpbiJelae itiuinun'im ited on.i

Timothycop 1.Kars BSI

Captain, USAF I -Dst :-- n "

December 1984 i

Approved for public release; distribution unlimited --'

.~~~~ -.

Preface

The desire for an in house relational database for

teaching and research purposes was expressed by Dr. Thomas

Hartrum, on the faculty of the AFIT/EN Electrical Engineer-

ing Department. Thus, in 1979, Mark A. Roth started the

initial development of such a database. He left a partially

developed system and recommendations of how to complete the

system. In 1982, Linda M. Rodgers continued the development

of the database system. She extended the implementation of

the system but left the system still not completely imple-

mented. I undertook this project with the intention of

completing the implementation of the system and analyzing

(i" the performance of the system.

The initial goal had to be revised to just providing an

operational system when it was determined that even using

numerous memory overlays the system was just too large to

efficiently operate on the computer being used. Also, the

memory overlays caused numerous unexpected problems that

greatly hampered the development. Hopefully, the recommen-

dations, design and implementation provided will allow the

system to be easily expanded to its full capability.

I owe many thanks to Dr. Hartrum for his comments,

advice, encouragement, and understanding during this thesis

effort. Thanks are also due to Dr. Potoczny for his advice

and comments and Dan Zambon and Charlie Powers of the

AFIT/ENE staff for their assistance.

.-. . .-. .

Table of Contents

Page

Preface ii
List of Figures v

Abstract. vii

I. Introduction

Problem Statement. 2
Scope and Assumptions 3
General Approach. 3
Sequence of Presentation 4

II. Background . . . 5

Data Definition 7
Data Manipulation 7
Data Input, Modification, and Deletion 10

Access Structure 10
4 Query Optimization. 15

Tree Transformer 15
The Coordinating Operator Constructor 18

Summary 19

III. Design and Implementation. 20

Access Structure 20
Relation File. 20
Leaf Structure. 25
Basic Edit Modules 34

Insert Module 36
Duplicate Tuple Checking Module 36
Relation File Insert Module . 38
Leaf Insert Module 39
B-tree Insertion Module 41

Delete Module 42
Selecting Tuples Module . . 42
Leaf Delete Module 44
B-tree Delete Module . . . 46

Modify Module 46
Implementation of Relational Operators' 47

Display Module 51
Project 54
Select Module 55
Join Module 57

Join= 60

iii .

::::::::::::.:.:. .

Join> 62
Join< 64

Product 65
Summary 65

IV. Verification and Validation 66

Data Definition Testing 66
Edit Module Testing 68

Insert Module 69
Delete Module 72
Modify Module 75

Retrieve Module Testing 75
Select 78
Project Module 79
Join Module. 80

Join = 81
Join> 82
Join< 83

V. Conclusions 85

Recommendations 86

Conclusion. 87

Appendix A: Pascal/MT+ 88

Appendix B: B-tree Access Structure Concept . . 98

Appendix C: Modifying the AFIT Relational Database 102

Appendix D: Article 106

Bibliography 114

Vitairp 115

Volume II: Program Listings and Documentation

iv

[./<.-.....,.[...?-'.. , -<..<.. "o.,..<.......,,...-..................-.o ,............,.........../
U , .',.-, -...-..-.. • - .*...,,*• .. -. , * " *.. *. ... ,.... ,

List of Figures

Figure Page

1. Roth's Database System 6

2. The DDL Processor 8

3. The DML Processor9

4. B-tree Header Record Format 12

5. B-tree Record Format 13

6. The Basic Organization of the Query Optimizer 16

7. Relation File Header Record Format 22

8. Tuple Record Format. 23

9. Leaf File Header Record Format 26

10. Leaf Key Record Format 27

11. Example Format of Leaf Page 29

12. Leaf Page Header Record Format 30

13. Leaf File TID Header Record Format . . . 31

14. TID Record Format 32

15. Basic Structure of Edit Module 35

16. Basic Structure of DUPKEY 37

17. Basic Structure of PUTINLEAFNODE 39

18. Basic Structure of GENSELECTLIST 43 . .

19. Basic Structure of LEAFNODEDELETE 45

20. Basic Structure of RETRIEVE Module 48

21. Basic Structure of RUN Module 50

22. Basic Structure of DISPLAY 51

23. Basic Structure of PROJECT 56

V

* * -

24. Basic Structure of SELECT 58

25. Basic Structure of JOINEQ 61

26. Basic Structure of JOINLTGT 63

B-i Example of a B+-tree 99

B-2 Example of the Access Structure 100

vi

Abstract

The single processor optimized relational database

system is a database system designed and implemented for

teaching and research purposes at the Air Force Institute of

Technology. The system was originally designed and par-

tially implemented by Mark A. Roth in 1979. The design and

implementation was continued by James Mau in 1981 and Linda

M. Rodgers in 1982. To complete the implementation of the

relational database system, an investigation of the design

and implementation of the previous research efforts was

done. Additional research was done to explore possible

designs and implementations of access structures and pos-

sible methods to implement the relational operators.

With this background, a structured design was completed

for the access structure and the relational operators. Once

this was accomplished, the low level access structure was

implemented and tested, providing the capability to insert,

delete, and modify data in the relational database system.

Finally, some of the relational operators were implemented

and tested providing an operational relational database

system.

vii

' " " " : ~~~~~~~~~.,;a .-............ ii"*', ,.............. '' - ""'''.

IMPLEMENTATION AND ANALYSIS OF A
MICROCOMPUTER BASED RELATIONAL

DATABASE SYSTEM

I. Introduction

There is an ever increasing demand for a better way to

handle the vast amounts of data necessary in today's compu-

ter world. Research has provided database management sys-

tems to aid in the management of this information. Although

database management systems have helped to alleviate the

problem of managing information, most database management

systems are complex and require a computer professional to

understand and use them.

The introduction of the relational database model pro-

vided the basis for a database system that the users could

easily understand and use. The fact that the user can look

at the information in the logical manner in which he wants

to see it, not the way the information is stored in the

computer, causes the "user-friendly" environment. But, this

"user-friendly" environment causes some significant problems

for the database management system in storing and handling

the information. The most significant problem is the com-

plexity of handling the data logically. This causes the

relational database system to be slow to respond to the

user.

Very few relational database systems are commercially

available because of the complexity of handling the data.

.1

Thus, when the AFIT community expressed a desire to install

a relational database system for teaching and research pur-

poses, the lack of available relational database systems

caused a concern of how to handle the problem. This concern

started research to develop and implement a pedagogical

relational database system.

The design of the AFIT database has taken into consid-

eration the time problem by using query optimization techni-

ques (6) and the data retrieval and accessing problem by

using a B-tree concept in the file handling (5). The re-

search efforts have been fruitful in these areas but they

have never been fully realized because the AFIT relational

database still lacks the low-level access structure necess-

ary to make the system operational. Until the total system

can be fully implemented, an accurate measure of how suc-

cessful the AFIT relational database system is at allevia-

ting the inherent problems of a relational database can not

be completed.

Statement of Problem

The purpose of this thesis was to complete two tasks.

First, the remaining access structure of the AFIT relational

database system was completed, allowing data to inserted

into the data base. Second, the main relational operators

were implemented to provide the ability to retrieve data

from the database. This also will provide the ability to

evaluate the performance of the query optimization concept.

2

.

.

.

Scope and Assumptions

The scope of this thesis was to complete the implement-

ation of the AFIT relational database system. To complete

the implementation, it was assumed that the previous work by

Roth and Rodgers was correct with only minor modifications.

The modifications included alleviating the memory space

problem that had arisen in the development effort by conver-

ting to a PASCAL that provided more management of the com-

puter's memory instead of the form of PASCAL now used.

Next, the design and implementation of the remaining access

structure modules was completed. Then the relational opera-

tors were coded and tested to make the system operational.

General Approach

The first step in solving this problem was a review of

the literature from which the AFIT relational database orig-

inates. It included reviewing literature on the query opti-

mization techniques and the file structure implementation.

Next, the actual code was examined. This was done for a

twofold purpose, first to understand how the database is

currently implemented and secondly for the purposes of con-

verting the code from the current form of UCSD Pascal to

Pascal/MT+.

After becoming familiar with what existed, the next

step was converting the existing software to Pascal/MT+ to

provide better utilization of the computer's memory space.

Pascal/MT+ was selected as the Pascal compiler because of

3:ii

.o

preserving transformations. This essentially means to push

the selects and projects as low as possible in the query

tree thus requiring less data to be stored and manipulated

in temporary relations. Also, by pushing the selects and

projects down to the lowest level, the capability to utilize

the B-tree access structure for random processing greatly

increases. The utilization of the directory of the access

structure should provide faster processing time because the

amount of data to be manipulated and examined should be

greatly reduced.

The tree transformer also optimizes the query tree by

combining subtrees that contain set operators on a common

relation into a single compound operation on the relation

(7: 572). This causes the relation to only be read once

instead of having multiple reads of the relation. Also, if

directories exist for all the domains involved, it might

only be necessary to examine the directories to provide

pointers to the desired tuples, thus eliminating even more

accesses.

The tree transformer reduces the amount of memory space

necessary for storing temporary relations by using the cor-

rectness preserving transformations. It then tries to re-

duce the amount of processing time by reducing the proc-

essing of redundant data by combining operations on a common

relation. The output from the tree transfomer is a opti-

mized query tree. This optimization alone should be an

improvement over the unoptimized query, but the coordinating

17
.'' o

Query

Syntax
Analysis

Operator tree

Correctness Transformation
Preserving Tree Application
ransformations Transformer Rules

Optimized Operator tree

Coordinating
Basic Operator

Procedures Constructor

Set of cooperating
concurrent tasks

Concurrent
Data Base
Machine

tResponse

Figure 6. The basic organization of the query optimizer

16

change, or delete tuples from a relation, and the run mod-

ules which actually provide the ability to query the inform-

ation contained in the database.

The run modules allow for queries to be constructed and

edited before they are executed. The queries are construc-

ted using a form of relational algebra. An option exists to

allow the user to save the command file that contains the

queries for later use. Once the command file has been

created and execution started, the queries are checked for

the correct syntax and then optimized utilizing the princi-

ples formulated by Miles Smith and Philip Chang (7).

Query Optimization. There are two types of query opti-

mization: an optimization of the low level efficiency of -o

access paths and the efficiency of disk accessing; or a high

level optimization by transforming the query into a more

efficient structure so that the work expended by the low

level access structures is kept to a minimum. The primary

concern of the work done before this thesis was concerned

with the high level transformations of queries. The fol-

lowing sections briefly describe the steps taken to optimize

queries and how the steps were implemented at the start of

this thesis effort. Figure 6 portrays the basic organ-

ization of the query optimizer.

Tree Transformer. The tree transformer receives the

syntactically correct queries in the form of a query tree.

This query tree is then transformed using correctness

15

.... -.. .*..*.* ***.**'.*

functions to shrink the tree as necessary to keep it in the

balanced form of a B-tree.

The B-tree insertion functions allow the adding of new

values to the B-tree. If this causes overflow, then a new

B-tree node is created and added to the B-tree and the

height of B-tree is adjusted. The insertion of a new domain

value can cause several modules to be called that add and

split nodes. The new value added to the B-tree points to a

leaf where the tuple identifiers are stored. So, the pur-

pose of the B-tree nodes is f. provide an index to the

proper leaf. The storing of the tuple identifiers in the

leaves and providing links between the leaves provides for

the tuples to be accessed sequentially using only the leaf

nodes.

The modules that delete tuple identifiers from the

existing B-tree provide for keeping the tree balanced by

combining the index nodes as necessary and even creating a

new root for the tree if necessary. The deletion of a tuple

identifier only affects the B-tree if the value deleted was

the largest value in the leaf. It then causes the value to

be deleted from the B-tree. Rodgers developed and tested

the B-tree modules described above and tested them as stand-

alone modules but never could incorporate them as fully

integrated parts of the system due to a lack of memory space

(5).

The data manipulation facilities include the edit mod-

ule, which uses the access structure described above to add,

14

B-tree Record

Fields in B-tree Record

A B C D E
El E2 E3

1 3 Variable 1 15 3

Length in Characters

Field Definitions:

A - Deletion Field: A field that indicates whether or
not the record has been deleted.

B - Record Type: A 'B' is this field indicates that
this is a B-tree record.

C - Number of Keys: The number of keys currently in
this B-tree node.

D - Domain Value: The domain value that is the largest
value in the leaf or child node that this
record points to.

E - Pointer Field: A pointer to either a child B-tree
node or a leaf node.

El - The pointer type field. 'B' in this field
indicates the pointer points to a child node
in the B-tree and 'L' indicates it points to
a leaf node.

E2 - Filename of the leaf or node pointed to.
E3 - Block number of node or leaf pointed to.

Figure 5. B-tree Record Format

13
4 .

.' ' ".- -.- "- '',.i '-...'..' - ',' - .-.."'- .. .-" .'. .." -.- -" -"-",' -- '..' .- '. .--. ''.- '.."".'" ,. ' ,'..

B-tree Header Record

Fields in B-tree Header Record

Length in Characters

Field Definitions:

A - B-tree root: The block number in the B-tree that
contains the B-tree root.

B - Maximum number of keys in leaf. The maximum number
of keys in a leaf node.

C - Maximum number of nodes in a leaf.

D - Fanout ratio: The fanout ratio or maximum number
of records in a B-tree node. Computed by
dividing the size of one block by the size of
one B-tree record. It can range between 4
and 10.

Figure 4. B-tree Header Record Format.

12

.. . -" 4 ""
~

.

the access structure. There are many different access paths

and associated structures but the one used in this system is

based on a B-tree (5). The original structure recommended

by Roth (6) was based on Theo Haerder's generalized access

path structure (1). Rodgers then partially implemented the

concept of the generalized access path using the B-tree

concept (5).

The B-tree concept utilizes a B+-tree to provide an

index to the leaf structure. The leaf structure contains

the tuple identifiers (TIDs). The TIDs can then be used to

directly access the tuples in the relations. To facilitate

operations on the attributes, a B-tree and leaf structure

are maintained for each non-text domain. The values of all

attributes defined on the same domain are stored in the

access structure for that domain.

The B-tree structure developed has two record formats.

The first is the B-tree header record. The B-tree header

record provides the number of B-tree records that can fit in

a node of the B-tree and what block of the B-tree file con-

tains the root of the B-tree. Figure 4 shows the format of

B-tree header record and Figure 5 shows the B-tree record.

The B-tree modules that were developed provided the

ability to determine if a B-tree currently exists for the

domain and the capability of inserting and deleting individ-

ual values from the B-tree. The insertion of a value into

the B-tree requires several functions to expand and split

the tree as necessary. The deletion modules provide the

11

Ip U I I~-5g ii., i Eu y. I.- UU I E lIi I, .I '. . -

background for the continued development of the system.

Data Input, Modification, and Deletion.

Although the edit facility , which "ontains the input,

modify, and delete modules, was not completely implemented

the access structure modules are in place. The biggest

factor in the data storage and manipulation facility is the

access structure. This was important since it is assumed

that the amount of information to be stored in the database

is too great to be stored in primary memory. Also, any

information stored in primary memory would be lost as soon

as the computer was shut off.

The Edit module controls the input, modification, and

deletion of data in the database. These modules either use

6. the access structure to determine where the data is stored

or update the access structure with the location of new data

being added in the system. The following sections describe

the access structure and the modules that existed to manipu-

late the structure.

Access Structure. The access structure is the map of

where the data is located in secondary memory. This mapping

is used whenever data is needed. It allows the database

management system to find the information in secondary mem-

ory and then load the data into main memory for processing.

Since the operation of the database management system de-

pends on the access structure, the performance of the system

depends a great deal on the efficiency and effectiveness of

10
............

OSINSERT DELETEGTSV

MOIY SELECT SORT EDIT EXECUTE

SAVE PSSWOR TREE OPTIMIZE]

COPY RENAME SPLITUP RUN

Figure 3. The DML Processor

EXEC

SETUP ~ INITIALIZE QI

INVENTORY DEFINE

LIT LIST DEFINE DEFINE
DOMAINS RLTOSDOMAINS RLATIONS

Figure 2. The DDL Processor
Modified from Figure 2 of Reference5

resources, divided the system into two major areas: data

definition and data manipulation. Figure 2 reflects the

data definition facility and Figure 3 shows the data manipu-

lation facility. The following sections discuss some of the

major portions of the database system.

Data Definition

The data definition module provides the capability to

define domains and relations. This facility was originally

implemented as part of the complete system (6: 43-45).

During later development of the system, it was split off and

made a standalone module of the system (5: 40-42). The data

definition module was made a standalone part of the system

to allow only the database administrator the ability to

define new domains and relations and the capability to

destroy current definitions of domains and relations. This

provides for better integrity for the system and provides

centralized control of the definition process. Figure 2

shows the data definition facility.

Data Manipulation

The data manipulation actually can be divided into two

areas: data input, modification, and deletion; and query

optimization and data retrieval. This allows the user of

the database to enter data into the database, manipulate it

as necessary, and retrieve it in response to queries. Nei-

ther facility was completely implemented but the existing

modules and considerations will be discussed to provide a

.. .. - "-] .'-- % - -". .. "]- .° . . " " ' " ' L-.. '""- - -"-"n n " -
"

j I-
L

4

~-2.

H
C')

H

t-)
LI

C)

'-I

rr~
C)H r. -,

r.
z F

H
4.,

t-. U) - -

* ~-.

2 1 ~
'.~1

-- C

4

* 47 . -

C)

S.-

iii] fill

V

.1~... I __

C..

II. Background

E. F. Codd first introduced the idea of utilizing the

relational concept for data in 1970. Since that time, much

has been written about the theoretical concepts of the

relational view. Not only have the theoretical aspects of

the relational view been studied but also the practical

aspects have been widely researched. Some of the current

implementations of relational database are Ingres, Query By

Example, and System R (3: 187-195). The advent of the

microcomputer caused a demand for a relational database

system that will run efficiently on this type machine. Some

relational-like databases, such as dBase II and Condor, have

become available for a microcomputer but these systems were

not readily available in 1979. Therefore, in 1979, Mark A.

Roth started the design and implementation of a relational

database system for a microcomputer (6: 8-10).

Roth considered many key aspects of the relational

database in his design and implementation. Some of these

aspects were the means for data definition and data manipu-

lation. The original system was designed and partially

implemented on the Intel Series II (6). Figure 1 shows the

state of the system at the conclusion of Roth's thesis

effort. Implementation was continued by Mau on the LSI-11

using UCSD Pascal (2). Linda M. Rodgers continued the

design and implementation of the relational database in 1982

* (5). Rodgers, in an effort to better utilize limited

"..-

".-" 5 .

its availability and its ability to provide program over-

lays. Also, Pascal/MT+ statements very closely resemble

UCSD Pascal, thus making the conversion somewhat easier. The

code was then converted to the new form of Pascal.

After the original software was converted, the design

and implementation of the remaining modules began. A struc-

tured design approach was used to design the remaining

6 modules which include the low-level access modules, portions

of the edit modules, and the run modules. The modules were

coded and tested independently before they were integrated

* into the complete system. Finally, a system test was exe-

cuted to validate the integration and operation of the

complete system.

i0
Sequence of Presentation

The presentation of this thesis parallels the approach

to solving this problem. Chapter II provides background

information used in the previous and current development of

the AFIT Relational Database. Chapter III presents the

details of the design and implementation of the remaining

modules and Chapter IV contains the description of the

testing done to verify and validate the system. Finally,

Chapter V presents conclusions and recommendations.

4j.
.....................

4

operator constructor provides even more optimization.

The Coordinating Operator Constructor. The coordina-

ting operator constructor takes the transformed query tree

provided by the tree transformer and implements each opera-

tor represented from a basic set of procedures in such a way

that the sort orders of the intermediate relations are

optimally cooordinated. By providing optimal sort orders

for the intermediate relations, the search time is reduced

if directories exist for the domains chosen as sort orders.

Also, if the sort order chosen is a primary key, processing

time is reduced because the operation can use the directory

for the domain and not have to eliminate duplicate tuples.

The coordinating operator constructor makes two passes

* over the operator tree. On the first pass, an upward pass,

each branch is labeled with a preferred sort order. The

second pass is a downward pass that examines the set of

perferred sort orders and makes a final decision on which

preferred sort order will be implemented (7: 573-576).

Roth implemented the query optimization technique

described above but also included some additional features.

The additional features include not only optimizing a single

,. expression as was considered by Smith and Chang, but also

optimizing multiple queries. Multiples queries means quer-

ies where the user expects several relations returned as the

result. The additional features of Roth's implementation

are concentrated in two modules. The first module, the tree

module, examines subtrees in different queries to determine

18

:

if subtrees might be shared. The output of this module is a

network of shared trees. The other module, the splitup

module, produces an order-optimized forest of separate trees

in which all the shared subtrees have been removed (6: 55).

At the start of this thesis effort the coordinating operator

constuctor was not fully implemented.

Summary.

The implementation of the AFIT relational database by

Mark Roth and Linda Rodgers has addressed several key as-

pects associated with a relational database system. The

data definition facility, included to allow the database

administrator the ability to define and control all rela-

tions and domains, is one of the key concepts of a database

system that has been implemented. The next concept of a

relational database system that was implemented was the

access path and directory structure developed by Rodgers to

allow for more efficient access to the data stored on sec-

ondary memory. And the final concept that was implemented

was the optimization techniques implemented by Roth to pro-

vide faster response time to queries of data in the database

system. Although these structures and techniques are key

concepts of a relational database system and have been

implemented, the system still lacked the design and imple-

mentation ofthe procedures to input, modify, and delete

data from the database and all of the relational operators

to retrieve the data from the database.

19

..............

III. Design and Implementation

The design of the remaining parts of the relational

database system had four primary tasks: conversion of exis-

ting software from UCSD Pascal on an LSI-11 to Pascal/MT+ on

a Z80 CP/M system; design of the remaining access structure;

implementation of the edit functions to input, delete, and

modify data within a relation; and finally the design and

implementation of the relational operators. The unique

features of the Pascal/MT+ system are described in Appendix

A. The access structure will be discussed first since

it was an important element in the design of any the func-

tions to add, modify, delete, or retrieve information from a

relation.

Access Structure

The access structure used is based on the generalized

access structure described by Theo Haerder (1). The

access structure consists of the relation file, the B-tree

and the leaf structure. The B-tree and its associated

structure and operations are discussed in Chapter 2 since

they had been previously designed and implemented (5).

The relation file and the leaf structure will be described

in the following paragraphs.

Relation File

The relation file is the actual repository of informa-

tion for a specific relation. It contains two types of

20

records: the header record and the tuple record. The header

record occurs only once at the beginning of the relation

file. It contains information used by the modules that

insert tuples into the relation file and information about

the number of tuples currently in the file. Figure 7 shows

the format of the relation file header. Following the

relation file header are the tuples. Figure 8 shows the

format of the tuple record. Each tuple contains a deletion

field, a type record field, and a list of the attribute

values of the tuple. The tuple records are fixed in length

but they do span blocks. Each attribute field within the

tuple is fixed in length. The length is determined by the

domain size definition for that attribute as defined in the

data dictionary. The attribute values are stored as ASCII

characters; therefore, all numeric fields are converted to

ASCII characters before being stored. If the attribute

value does not completely fill its field, the remaining

characters of the field are filled with blanks.

The relation file has three operations that change it.

They are insertion, modification, and deletion. When a

tuple is inserted into the relation file it is always

inserted at the current end of file as indicated by the end

of file pointer in the header. Modification changes the

values in the appropriate fields of the tuple and returns

the tuple to its original position in the relation file.

The deletion algorithm just sets a flag in the deletion

21

*... * -,-...

Fields in Relation File Header Record

A B Field C Field D E F G

C1 C2 DC3 1 D2 D3

Length in Characters

Field Defintions:

A - Deletion Field: A field indicating if there are
any valid tuples in relation file.

B - Record type: An 'H' in this field indicates a
relation file header record. It is to used to
verify the correct position.

C - End-of-File Pointer: A pointer to the current
last character in the relation file. It
consists of three subfields.

Cl - Filename: Filename of relation file.

C2 - Blocknumber: The number of the block in
the file where the current end of file is
located.

C3 - Charnumber: The number of the position in
the block where the next character should
be inserted.

D - Overflow Pointer: A pointer to an overflow
file

D1 - Overflow Filename
D2 - Overflow Block number
D3 - Overflow Character number

E - Record Size: The size in characters of a
tuple. This is the sum of the domain sizes
for each attribute in the relation.

F - Number of Tuples: Number of tuples currently
in the relation.

G - Deleted Tuples: The number of tuples that have
been deleted from the relation file that the
space for the records has not been recovered.

Figure 7. Relation File Header Record Format

22

.......

Fields in Tuple Record

A B C

1 Variable

Length in Characters

Field Definitions:

A - Deletion field: A field to indicate if the
tuple has been deleted.

B - Record type: A single character to indicate a
tuple record. (T)

C - List of attribute values.

Figure 8. Tuple Record Format.

field of the tuple but does not physically remove the data.

This does cause some wasted space in the relation file when

tuples are deleted. To conserve the wasted space, the

insert module could be changed to search the relation file

for the first empty space to insert a tuple. Other consid-

erations for future development to better utilize disk space

are a reorganization module to reorganize the relation and

leaf files to remove wasted space and the use of variable

length records to avoid the waste due to blank filling

fields.

The remaining structure is the leaf structure. The

leaf structure needs to contain all the values for a given

domain and pointers to the relations that contain the domain

23

.4
.

i I IE* IIIU I U l . l I | I i .. !. m

values. Also, the leaf structure should contain enough

information so that a given relation can be accessed on the

sorted order of a attribute of the relation that is defined

in this domain.

Theo Haerder's generalized access structure relies on

positional dependencies to depict different characteristics

such as owner and member characteristics. Since this is a

relational database and it is assumed that good relational

database design techniques are employed in designing the

relations, it was not considered necessary to keep owner and

member characteristics. Therefore, the leaf structure must

contain the pointers to the tuples or Tuple Indentifiers

(TID) in some form that can be used to access a given rela-

tion in sorted order and allow the retrieval of all TIDs to

relations that contain an attribute defined on the domain

with the same value. The latter property of finding differ-

ent relations with the same domain value is of great value

in simplifying the implementation of the join operator.

The design of the leaf structure also needed to consi-

der the disk storage necessary to store the leaf and how

many disk accesses necessary to retrieve a desired TID.

Since the B-tree contains an index to a range of values and

points to a single leaf node, a structure that placed domain

values and TIDs in a single structure would require all

leaves to be sequentially accessed until the desired domain

value was found. The disk accesses required by this type of

*structure to reach the desired value is equal to 1/2 the

24

****~~***

number of domain values stored in a single leaf, assuming

that each leaf page contains only one value. If more than

one value is stored in a leaf page then the manipulation of .-

the TIDs becomes excessive to maintain the correct orders.

The leaf structure design selected tries to alleviate

the problems of disk accesses and simplify the manipulation

of the TIDs to maintain a proper order, but does not fully

utilize disk space. The decision to use a structure that

might waste some disk space but reduce the disk accesses and

simplify the necessary manipulation algorithms was made be-

cause disk space was plentiful and the optimization of the

processing time was one of the goals defined at the start of

the development of this relational database system.

Leaf Structure

The leaf structure has two main parts, the leaf header

and the leaf pages. The leaf header contains pointers to

the previous leaf header and next leaf header and contains

domain values and a pointer to the leaf pages where the TID

records for each value are stored. Figure 9 shows the

structure of the leaf header and Figure 10 shows the detail

of the key records. The domain values are stored in a key

record that contains the domain value and a pointer to the

record in the file that contains the TID records for this

value. The key records are maintained in ascending order of

domain value within the leaf header. This plus the pointers

from one leaf header to the next provide the capability to

25

Fields in Leaf File Header Record.

1 1513 15 3 15 3 3 3-3
Length in Characters

Field Definitions:

A - Deletion Field: A field to indicate if the
whole leaf has been deleted.

B - Record Type: A character to indicate the type
of record. 'L' for the leaf header record.

C - Next Leaf Pointer: A pointer to a leaf that
contains the records for domain values that
are greater than domain values of the
current leaf.

C1 - Filename of next leaf.
C2 - Blocknumber of next leaf.

S
D - Previous Leaf Pointer: A pointer to a leaf

that contains the records for domain values
less than the domain values of the current
leaf.

Dl - Filename of previous leaf.
D2 - Blocknumber of previous leaf.

E - Overflow File Pointer: A pointer to an
overflow file. Currently unused.

El - Overflow filename.
E2 - Overflow blocknumber.

F - Maximum Number of Keys: The maximum number of
domain values (keys) that can fit in the leaf.

G - Number of Keys in Leaft The number of domain
values or keys currently stored in the leaf.

H - Domain Size: The maximum size in characters of
the domain values stored in the leaf. If the
domain is of type real, one character is added
to the domain size to allow for the decimal
point.

Figure 9. Leaf File Header Record Format.

26

Fields in Leaf Key Record

A B C D

Di D2

1 Domain Size 15 3

Length in Characters

Field Definitions:

A - Deletion Field: A field indicating if all
references of this domain value have been
deleted. Currently not used because the
record is physically removed.

B - Record Type: A field indicating the type of
record. 'K' indicates a leaf key record.

C - Domain Value: The value of at least one
attribute that is defined in this domain. The
length is the maximum length defined for the
domain. If the length of the value is less
than the maximum length, the field is filled - -

with blanks to the maximum length.

D - Leaf Page Pointer: A pointer to the leaf page
that contains the relation and attribute
identifiers and the TIDs of the tuple that
contain this domain value.

DI - Filename of leaf page.
D2 - Blocknumber of the leaf page.

Figure 10. Leaf Key Record Format.

27

sequentially process a relation on a given attribute. One

drawback of this structure is that to determine if a rela-

tion's attribute has that value the TID record must be read

and searched to see if the relation and that attribute are

present.

The physical leaf structure implemented uses the physi-

cal considerations that a block is 512 characters in length.

Each record has a fixed length since this simplifies inser-

tion, access, and deletion algorithms although it does waste

some disk space. The leaf header record contains several

pieces of information including the number of domain values

that may be contained in a single leaf. The number of

values that a leaf may contain is based on the size allowed

for the domain. The leaf header record uses 65 characters

for its previous and next leaf pointers and other informa-

tion. This leaves 447 characters of space to be used to

store key values and their associated TID record pointers.

The key records are 20 characters plus the length of the

domain, Since the domain size can range from one to 80

characters, the maximum number of key records that can be

stored in a leaf header is 21 and the minimum number of

domain values that can be contained in a leaf is 4. By

providing a relatively large fanout ratio, the height of the

B-tree is kept smaller thus providing for faster processing

of the B-tree.

The leaf page records contain three different records -

28

.......-... ' -A %

the leaf page header record, the TID header record, and the

TID records themselves. Figure 11 shows an example of a

leaf page and how the three type of records fit and are

associated in the leaf page.

Leaf Page

Leaf page header : TID header : TID : TID,

TID header : TID : TID header : TID : TID : TID

Figure 11. Example Format of Leaf Page.

The leaf page header record is found at the beginning

of each leaf page record. It provides the number of TID

header records and the number of TIDs contained in this leaf

page. The leaf page header may also provide a pointer to

another leaf page. This pointer is used when there is not

enough space in the current leaf page to hold all the TID

header records and TIDs for the domain value. Figure 12

shows the format of the leaf page header.

The TID header records are stored based upon an ascend-

ing value of the relation filename and the attribute ID.

This allows the capability to determine if a relation is

present in the leaf page without always having to search the

entire leaf page. Figure 13 illustrates the format of a TID

header record.

29

., . .-

Fields in Leaf Page Header Record.

1 A B C D EIC1 C2 C3

I 1 15 3 3 3 3

Length in Characters

Field Definitions:

A - Deletion Field: A field to indicate if all the
data has been deleted from this leaf page.

B - Record Type: 'H' in this field denotes that
this is a leaf page header record.

C - Overflow Pointer: A pointer to a leaf page
that contains overflow information from
this page.

C1 - Filename of overflow leaf page.
C2 - Blocknumber of overflow page.
C3 - Indicator of which half of the block the

overflow is located.

D - Number of TID Records: A count of how many TID
records currently exist in this leaf page.

E - Number of TID Header Records: A count of the
number of TID header records that are
currently contained in this leaf page.

Figure 12. Leaf Page Header Record Format.

30

.-. ----.

Fields in Leaf TID Header Record

A B C D E

1 1 15 3

Length in Characters

Field Definitions:

A - Deletion Field: A field indicating if all
tuples for the defined relation and attribute
have been deleted.

B - Record Type: 'R' in this field indicates that
this is a TID header record.

C - Relation ID: A 15 character identifier of a
specific relation. Currently the filename of
the relation file is used as the identifier
for a relation.

D - Attribute ID: An identifier of the specific
attribute in the relation.

E - Number of TIDs: A count of TID records that
currently exist for this domain value in the
defined relation and attribute.

Figure 15. Leaf File TID Header Record Format.

31

find the correct key record. FINDTID then finds the TID

header record in the leaf page that matches the relation and

attribute IDs. Then the TID records for that TID header are

searched for the TID that matches the TID of the tuple that

was deleted. When the correct TID record is found, it is

physically removed from the leaf page causing all the TID

header records and TIDs to be moved forward in the leaf page

to fill the vacant space.

LEAFNODEDELETE

D ET LEAF GETLEAF

SEEKKEY FINDTID DELETEFROP41BTREE

Figure 19. Basic Structure of LEAFNODEDELETE

If the TID record is the only TID for the TID header

record, the TID header is also removed from the leaf page.

If the leaf page contained only the one TID header record,

the leaf page is flagged as being deleted. If the leaf page

45

The TIDs retrieved are inserted into a list of selected

TIDs. This list is an ordered linked list. It is ordered

first on relation ID and then attribute ID. This allows the

combining of two lists of selected TIDS under "and" or "or"

conditions.

GENSELECTLIST takes the selected list of TIDS and calls

ORLIST or ANDLIST to combine the list under the condition as

stated. If there are conditions for more than one attribute

stated, all conditions for each attribute are satisfied and

then the list are combined using ANDLIST. This provides a

list of TIDs that satisfy all the stated criteria.

DELETE then takes the list of selected TIDs and re-

trieves the first one. If the user has requested the veto

option, the tuple is displayed and the user is asked if he

wants to delete this tuple. If the user responds positive-

ly, the tuple is deleted from the relation file by placing

an '*' in the deletion field of the tuple. The tuple's

attribute values are used to delete the tuple's TID from the

appropriate leaf file and update the B-tree, if necessary.

The DELETE module repeats this for each tuple in the list of

selected TIDs.

Leaf Delete Module. The DELETE module calls the

LEAFNODEDELETE module to delete the TID from the leaf file

and update the B-tree if necessary. Figure 19 shows the

basic structure of LEAFNODEDELETE. LEAFNODEDELETE calls

DETLEAF to find the correct leaf from which to delete the

TID. GETLEAF and SEEKKEY are called to read the leaf and

44

J.~~ ~ - - ---.. - . . .- - - - - - - - - -

GENSELECTLIST
"". ,-

DETLEAF] GETLEAF

Figure 18. Basic Structure of GENSELECTLIST

key contains the pointer to a leaf page, this pointer is

passed to FINDTID which searches the leaf page for a match

of the relation and attribute IDs of the attribute value

being processed. If a TID header record is found that

matches the relation ID and the attribute ID, all of the

TIDS associated with that TID header record are retrieved

and placed in the select list. The module then proceeds on

to the next key record and its leaf page and repeats this

process.

43

.....................

'- - - """. ."- ."".".""'"''""', , '.".-. .. '.-.. . . . ,' -" --'.". . .. ,-. '..-. -.--.- ,....-'.'.-'...,.....,.,..,'.. ', ,- ,

.

to be processed. All attributes of a tuple are kept in the

access structure except attributes defined to be of the

domain type, text. Therefore, the tuple may be accessed on

any attribute value that has been inserted into the access

structure which means any attribute not defined as text.

DELETE Module. The DELETE module has three functions to

accomplish. First, it must determine all the tuples that

meet the selection criteria given by the user. Next, it

deletes the tuples from the relation file. And finally, it

removes all the attribute values for the deleted tuple from

the access structure.

Selecting Tuples Module. GENSELECTLIST is the

module that provides the capability to evaluate the selec-

tion criteria and then using these criteria produce a list

of tuples that satisfy the criteria. Figure 18 shows the

basic structure of GENSELECTLIST. GENSELECTLIST works with

a single condition at a time. For equal to or greater than

conditions it first uses DETLEAF to find the leaf that might

contain the given value. If the condition is less than, the

module starts processing at the first leaf node which is

always maintained in block 0 of the leaf file.

GENSELECTLIST calls GETLEAF to get the necessary leaf.

In the case of greater than or equal to, SEEKKEY is then

called to find the correct key. If the condition was equal

to, only one key is processed. For greater than or less than

all keys are processed sequentially until the end of file is

reached or until the terminating condition is reached. Each

4-.2

.-. ".---'.'-.-.'--. " .-." '. ".-'. ".-' -. "..'.--.-.--------.------------.,--"---.---------,-,----.-.----------.--.

.. -I .U .U. - *'U U. U -, -

necessary.

Thus the value has been inserted into the leaf struc-

ture by LEAFINSERT and its sub-modules. LEAFINSERT returns

flags to PUTINLEAFNODE to indicate if the leaf had to be -

split or if the value inserted was a new maximum value for

the leaf. If either of these conditions occurred, then the

B-tree needs to be updated. Therefore, PUTINLEAFNODE deter-

mines if the B-tree needs to be updated and if so it calls

BTREE to update the B-tree.

B-tree Insertion Module. The BTREE module in-

serts new values into the B-tree. It first inserts the new

value into the lowest level B-tree node that points to the

leaf. If the leaf was split, then the B-tree is updated by

deleting the old value that represented the max value of the

leaf and the two values that represent the max values of the

two leaves after they were split are inserted. If the leaf

was not split but its maximum value changed, then the old

value for the leaf is replaced by the new maximum value of

the leaf. BTREE then checks the status of the B-tree node

after it is updated. If the B-tree node had to be split,

then the parent nodes in the B-tree will be updated. BTREE

is a recursive module to accomplish the updating of all the

appropriate nodes.

After the B-tree has been updated, if necessary, the

insertion for this attribute value is complete. The next

attribute value of the tuple is then passed to PUTINLEAFNODE

41

largest value currently in the B-tree is returned.

PUTINLEAFNODE then calls LEAFINSERT to do the actual

insertion of the value.

LEAFINSERT determines if a leaf structure exists for

this domain and, if not, initializes a leaf structure. If

the leaf structure exists, then the GETLEAF module is called

to retrieve the leaf into which the value should be inserted

and SEEKKEY determines the position of the appropriate key

record or the insertion position of a new key record. If

this is a new key, then the leaf is checked to see if it is

full. If the leaf is full, then SPLITLEAF is called to

split the leaf into two leaves and insert the new key. If

the leaf is not full, then the INSERTLEAFKEY module inserts

the key record in the appropriate position in the leaf and

adjusts the value of the number of keys in the leaf.

If the key was found, then the pointer to the leaf page

that contains the TIDS for that value is passed to FINDTID.

FINDTID searches for the relation ID and attribute ID of the

value being inserted. FINDTID returns the position of the

matching TID header record or the position to insert a new

TID header record. FINDTID also returns a flag to signal if

the matching TID header record was found or a new one needs

to be inserted. INSERTTID is then called to insert the TID

record and the TID header record, if necessary. INSERTTID

.~s an algorithm that physically moves the TID and TID

header records in the leaf page to maintain the proper

ordering. It also puts overflow data into new leaf pages as

40

the INSERT module and passed to the PUTINLEAFNODE module.

Leaf Insert Module. The PUTINLEAFNODE module

inserts the attribute value into the leaf structure and if

necessary calls the module to insert the value in the B-

tree. Figure 17 shows the structure of PUTINLEAFNODE.

I PUTINLEAFNODE 1

DETLEAF BTREE

I .

FINDT I LEAFINSERT INSERTTID SPLITLEAF

Figure 17. Basic Structure of PUTINLEAFNODE

First, PUTINLEAFNODE calls DETLEAF to get the pointer

to the leaf into which the value should be inserted. DETLEAF

looks for the B-tree record that has a value equal to or

larger than the value to be inserted and returns the leaf

pointer of this record. If the value to be inserted is

larger than any existing value, then the leaf pointer of the

39

.
• "'" :- ' im i ' ~ i "'" ." . . " " " . . . " "

matched but it has not been determined if the value was for

the correct attribute of the correct relation so the leaf

page is searched for a TID header record that has the exact

relation and attribute combination as the key attribute

being processed. FINDTID is the module that provides the

searching capability of the leaf pages for a specific rela-

tion and attribute combination. If a match is found, the

key is flagged as being a duplicate.

The duplicate check has to be done for each key of the

relation or until a duplicate is not found for a key. This

allows the relation to have a key made up of several attri-

butes. If after all the key attributes have been checked

and all were duplicates, the tuple is rejected as a dupli-

t cate tuple. No further action is taken with this tuple. If

the tuple is not a duplicate, the next action is for the

tuple to be inserted into the relation file.

Relation File Insert Module. The module that

inserts a tuple into the relation is INSERTTUPLE.

INSERTTUPLE reads the first block of the relation file

(Block 0) and retrieves the relation header. The relation

header provides the current end of file for the relation

file. -he attribute values of the tuple are then inserted .

at the end of file and a new end of file is placed in the

relation header record. INSERTTUPLE returns the TID for the -

tuple inserted. The TID is actually the starting position

of the tuple record that was inserted. The TID is taken by

38

.-.-.- - .

DUPKEY Li-

SEEKKEY FINDTID

GOODTUPLE ANDLIST

Figure 16. Basic Structure of DUPKEY

takes the pointer and reads that leaf from the leaf struc-

ture and places it into the buffer. GETLEAF also retrieves

the leaf header record so that the number of keys in the

leaf is known.

The leaf's key records are then searched. The module

called SEEKKEY does the searching of the leaf key records.

If no exact match is made with the attribute value, then

this value is not currently defined for this relation or any

other relation. If a key record is found with the exact

value of the attribute, then the leaf page pointed to in the

key record is read into the buffer. The value has now been

37
....-- . .

The modules are INSERT, MODIFY, and DELETE. These modules

will be discussed individually in the following paragraphs.

INSERT Module. INSERT is provided a list of the

tuples to be inserted into the relation. It handles each

tuple individually to insure that no duplicates might try to

be inserted. The insert module has four tasks to perform

for each tuple. These tasks are: check to see if the tuple

is a duplicate; insert the tuple into the relation file;

insert the attribute values of the tuple into the leaf

structure; and if necessary, insert the attribute values

into the B-tree. First the duplicate checking function will

be discussed.

Duplicate Tuple Checking Module. The actual

0 name of the module that checks for duplicates is DUPKEY.

Figure 16 shows the basic structure of DUPKEY. DUPKEY

references the relation definition stored in the data dic-

tionary for the key attributes of the relation. Then the

values of the key attributes of the tuple to be inserted are

checked against the current values in the relation. This

check is done by taking the value of the first attribute and

calling DETLEAF. DETLEAF determines if the B-tree structure

exists. If the B-tree does exist, it searches the B-tree for

the first value equal to or larger than the attribute value

from the tuple. Once the appropriate B-tree record is found

that points to a leaf, the pointer to the leaf is returned

to DUPKEY. DUPKEY then calls a module called GETLEAF that

36

.. .. ~.. *. - " i -" "i " " "" '...... *. *. *". "

MODLISTINSERTLIST

DUPKEY PUTINLEAFNODE

EINSERTTUPLE GENSELECTLIST LEAFNODEDELETE

*-Not Implemented

p Figure 15. Basic Structure of Edit Module

135

Basic Edit Modules

The basic edit modules provide the capability to input

new data into a relation, modify existing data in a rela-

tion, and delete existing data from a relation. Figure 15

shows the basic structure of the edit module. The edit

module starts by requesting the name of the relation to be

used. This relation name is verified as a defined relation

and the user's ID is compared to see if it matches the owner

ID. If the user's ID is not the same as the owner ID, the

user is queried for the appropriate ID. If the user cannot

provide the correct ID, the process is terminated. This

provides a measure of security to the system by only

allowing users that are owners or who know the correct

* o password.

Now that the user has provided the appropriate pass-

word, the user is asked to input his data. For the inser-

tion routine, the user enters complete new tuples. The

modify module requests a set of selection criteria that will

identify the intended objects and asks for the values of

individual attributes which the user wants to modify. The

delete function asks for a set of selection criteria for the

tuples the user wants to delete. Both the delete and modify

functions provide a veto capability to allow the user to

verify that he wants to change the tuples selected. After

the command and data is verified with the user, INDELMOD is

called. The INDELMOD module determines which type of

command is being processed and calls the appropriate module.

34

The records in the leaf page are all fixed length

records. This allows the algorithms that search the leaf

page to skip over TIDs that do not meet the criteria being

searched for. Also, this allows the insertion routines to

maintain a physical ordering of the TID header records by

moving a fixed number of characters to make room for an

insertion. It should be noted that some fields are not

always fully utilized so these fields are blank filled to

provide the proper length. One such case is the filename

field of the pointer fields since it is defined as 15 char-

acters but only 6 characters are currently used. The extra

space was allowed to provide expansion room in case the

system was installed on a machine that allowed more charac-

ters for a filename or to provide for the inclusion of some

suffix to the filename to provide for different versions or

backup files with the same name.

The leaf structure was designed to be an independent

data structure. This will allow the leaf structure to be

changed independently of the B-tree structure or any of the

other functions of the system. To provide this independent

data structure several modules were developed that provide

the capability to find a domain value in a leaf, find the

location of a TID for a given relation and attribute value,

insert a new domain value in the leaf, insert a TID into the

leaf structure, and delete a TID from the structure. These

modules will be described in conjunction with the basic edit

functions that insert, delete, and modify relations.

33

.'

Following every TID header record is at least one TID

record. If an attribute in a relation has the same value in

different tuples there will be a TID record for each tuple,

containing that value, following the TID header record. The

TID record actually contains the pointer to tuple in the

relation file shown in the TID header record. Figure 14

shows the details of a TID record.

Fields in TID Record

A B C

C1 C2 C3

11 15 3 3

Length in Characters

Field Definitions:

A - Deletion Field: A field used to indicate if
the TID has been deleted.

B - Record Type: 'T' in this field indicates that
this is a TID record.

C - TID: This is the tuple identifier. It points
to the file, block, and character position
where the tuple can be found.

C1 - Filename of the relation where tuple is
located.

C2 - Blocknumber of the relation file where
the start of the tuple is stored.

C3 - Character number in the block where the
first character of the tuple record
can be found.

Figure 14. TID Record Format.

32

-. ** * ..7*

° S * - *

was an overflow page, the necessary adjustments are made to

any preceding leaf pages that referenced it and any leaf

pages that might have followed it. If the leaf page was

deleted and it was the only leaf page for the key record,

the key record is then deleted from the leaf.

The leaf key record is physically removed from the

leaf. This causes all of the key records that followed it

in the leaf to be shifted forward one position. This main-

tains the ability to sequentially access a relation that has

an attribute defined on this domain. If the key record that

was deleted was the maximum key record of the leaf, then

DELETEFROMBTREE is called to adjust the B-tree.

B-tree Delete Module. DELETEFROMBTREE is the

module that updates the B-tree as necessary. If the maximum

value of a leaf is changed, then the value for the leaf is

changed in the B-tree. If a leaf was completely emptied by

the deletion, the reference to the leaf is deleted in the B-

tree. The B-tree then recursively adjusts any parent nodes

as required. This may mean collapsing the B-tree if a B-

tree node is completely emptied.

These operations are performed for each attribute in

each tuple that is not defined as domain type, text. The

DELETE module selected a complete list of TIDs first and

fully processes the tuple for each TID before going to the

next TID.

MODIFY Module. The MODIFY module acts like a delete

46

and modify module but only for selected attributes within a

tuple. First, MODIFY calls GENSELECTLIST to provide a list

of TIDs. Then each tuple is retrieved from the relation

list and the user has the option to have the tuple modified

or leave the tuple as is. If the tuple is selected to be

modified, the attributes to be modified are changed in the

tuple and then it is placed back in the relation file. Then

each attribute that was modified is first deleted from theb

leaf file by LEAFNODEDELETE and the new value for the

attribute is inserted into the leaf file by PUTINLEAFNODE.

The descriptions of both of these modules is provided above.

This method of modifying the tuples does have one drawback.

It does not guarantee the integrity of the database because

when an attribute is modified it is not checked to see if it

is part of the key for the relation or if the value being

inserted is a duplicate value.

Implementation of Relational Operators

The relational operators all are included in the part

of the relational database system called the RUN module.

The RETRIEVE module consists of the submodules to: build and

edit a query file; perform a syntax check of the query file

and produce a query tree(s); optimize the query tree;

retrieve the data as requested by the queries; and display a

relation. The modules to build, edit, check, and optimize

were previously implemented (6). Figure 20 shows the basic

°" structure of the RETRIEVE module. Therefore, the following

47

- -.- -f . , - - - :- . - , ---- , --.-. , .-.-. . .-.. . . .- ,.... , - i.-,-, -. . -,... - ,.- . , .- . - .. -. , i

RETRI EVE-"]-[

EDI7SPA TASFER

S EDIT EXECUTE

Figure 20. Basic Structure of RETRIEVE Module

discussion focuses primarily on the implementation of the

relational operators (PROJECT, JOIN, SELECT) and the module

to display relations (DISPLAY). It should be noted that

due to time limitations not all of the relational operators

have been implemented. The relational operators implemented

are those used most frequently in queries. It was felt that

these should be implemented first.

The first step of the RUN module originally was to take

the query tree and perform the operation called the coordin-

ating operator constructor (7). The coordinating operator

constructor was previously implemented (4) but was never

48

fully tested. The coordinating operator constructor at-

tempts to put intermediate relations into a preferred sort

order based on attributes that will be used in further

queries. Since the access structure implemented provides a

directory for every attribute, the function of the coor-

dinating operator constructor was not necessary. Therefore,

the coordinating operator constructor was not used as the

first step of the RUN module. Thus, RUN gets the bottom

query from the optimized query tree and calls the appro-

priate relational operator to perform the query. The pro-

cedure is repeated for each query moving upward in the query

tree. When the root of the tree has been processed, the RUN

module returns control to the EXECUTE module. The EXECUTE -

module may then have the RUN module process another query -

tree or return control to the RETRIEVE module. Figure 21

shows the basic structure of the RUN module.

All of the relational operators share a common first

step. The first step for each relational operator is define

the resulting relation of the query in the data dictionary.

The DEFTEMPREL module provides the procedures necessary to

complete the data dictionary definition of the resulting

relation.

DEFTEMPREL accesses the data dictionary and retrieves

the definition for the source relation. This becomes the

basis for the definition of the new resulting relation. The

resulting relation is a temporary relation so it is assigned

49

-
• ... , .- - -,-..

-.-..

RUN _

E JOINEQ JOINLTGT SELECT PRODUCT

~DIVIDE DFEECE] INTERSECT UNION

* - Not Implemented

Figure 21. Basic Structure of RUN Module

a relation ID of the form T followed by five digits. The

largest temporary relation identifier is stored in a global

variable and incremented each time a temporary relation is

defined. The global variable is reset each time the program

is initiated. The DEFTEMPREL module next needs to define

the attributes in the relation but this differs for the

different relational operators so this will discussed under

each individual operator. First, the DISPLAY module will be

discussed followed by the relational operators.

50

..................... :::!.

DISPLAY Module. The DISPLAY module was designed to

allow the user to display a relation. It allows the user

two options of how to display the relation. Figure 22 shows

the structure of DISPLAY. The first option is to display

the relation in the order it was inserted into the relation

file. This method provides no order except a chronological

order which is generally not important since the records in

the relation are not time-dated. The other option is to

display the relation sorted on one of the attributes in the

relation. The design, the advantages, and the disadvantages

of each of the options will be discussed in the following

paragraphs.

GETLEAF FINDTID GOODTU-PE LISTTUPLE

Figure 22. Basic Structure of DISPLAY

The option to display the relation in insert order has

very little design involved. It simply goes to the relation

file and reads the relation header. This provides the size

of the tuples. Then each tuple is read and displayed on the

screen. The display on the screen simply puts the value of

, .the first attribute on the screen and follows the value with

51

a semicolon and a space and then the next attribute value is

displayed on the screen. This method of displaying the

relation is somewhat crude but it is simple and very effi-

cient. Since no indices are ever read to display the rela-

tion, this option of displaying the relation is very fast.

The sorted option is much nicer to read since it dis-

plays the relation sorted on an attribute of the user's

choice. But the sorted option is somewhat slower since it

must read an index and then retrieve a tuple. The design of

the sorted option used many of the existing sub-modules

developed during the development of the edit functions to

search the access structure, which provides the index.

The first step in the sorted display after the relation

name is verified is to request the attribute name, from the

user, with which the relation should be accessed. This

attribute name can be any attribute in the relation that is

not defined to be the domain type, text. The domain type

text does not have an access structure so it may not be

used. This is noted here because this will cause some

limitations in implementing the relational operators. The

attribute name is then verified to be an acceptable

attribute name.

The retrieval of the relation is now ready to begin.

The first step is to read the first leaf in the leaf file

for the domain under which the attribute is defined. The

first leaf is always block 0 of the leaf file. GETLEAF is

* used to read the leaf. Next, the first key record is read

52

.. ..".

used to read the leaf. Next, the first key record is read

from the leaf and the leaf page pointer given to FINDTID.

FINDTID then either finds the TID header record for the

relation ID and attribute ID of the chosen relation and

attribute or returns a flag showing that the relation-

attribute pair is not present for this domain value. If the

TID header was found, all of the TIDs that belong to this

TID header are read. The tuples defined by the TIDs are

then retrieved from the relation file and displayed.

After all of the TIDs for the key have been processed,

the next key value is read from the leaf and the procL-

repeated. When all of the key records in a leaf have been

read, the next leaf that is pointed to in the leaf header is -.

read and its keys processed. This continues until all of

the leaf file has been processed.

The sorted option of displaying a relation has some

shortcomings. The first is the ability to display the

relation only in ascending order of the attribute. This is

caused only by the fact that the pointer to the last leaf or

leaf with the largest value is not stored. If this pointer

were stored somewhere, i.e. the leaf header of the first

leaf, then this capability could exist because each leaf

header has the pointer to the previous leaf.

The second shortcoming is the fact that since each leaf

page has to be accessed to determine if a TID header is

. present for the desired relation, the retrieval is very

. slow. At the present time there is no easy method to im-

53

.... ,& . . . _ - , . . . ,

prove this since it would require a different access struc-

ture to alleviate this problem. Since displaying the rela-

tion is very closely related to the operations necessary to

implement the relational operator, PROJECT, it will be dis-

cussed next.

PROJECT. The relational operator PROJECT, as all of

the relational operators, must first define a resulting

relation in which to store the results. The DEFTEMPREL

module provides the procedures to define the resulting re-

lation in the data dictionary. After DEFTEMPREL defines the

relation, it defines the attributes. The attributes de-

fined in the PROJECT operator are the only ones defined and

they are defined in the order that they are found in the

project operator. Thus the project operator, PROJECT rell

OVER att3, att2 GIVING temprell;, would have a different

data dictionary definition than the operator, PROJECT rell

OVER att2, att3 GIVING temprell;.

The next step in the PROJECT operation is to retrieve

the original relation. This is done exactly like the

DISPLAY module retrieves the relation in the unsorted op-

tion. As each tuple is read from the relation file, its

attribute values are stored in a record with the attribute

names. Thus to complete the project for this tuple, the

data dictionary definition of the resulting relation is used

to select the attribute names and values from the tuple.

Each selected attribute value is then placed in a tuple of

54

the resulting relation. The new tuple is now ready to be

inserted into the resulting relation. First, the new tuple

must be checked to see if it is a duplicate tuple. This

will require the DUPKEY module to be used to check if all . .

the values in this projected tuple have already been placed

in the resulting relation file. If the tuple is a dupli-

cate, it is discarded and the next tuple retrieved from the

original file. If the new tuple is ok to be inserted into

the resulting relation file, then the INSERT module of the

edit function is used to insert the tuple and its attribute

values into the access structure. This process is repeated

for each tuple of the original file. When the process is

complete, the new resulting relation can be displayed or

used as any other relation in queries. The resulting rela-

tion and its associated data will remain in the data dic-

tionary and access structure until the user decides to quit

working and terminates the program. At that time the temp-

orary relations will be deleted from the data dictionary,

the TID header and TIDs will be removed from the access

structure, and the temporary relation file deleted. Figure

23 shows the structure of PROJECT.

SELECT Module. The SELECT operator starts by calling

the DEFTEMPREL module to define the resulting relation. The

attribute definitions for the resulting relation are exactly

the same as the source relation named in the SELECT command.

The next step is to select the appropriate tuples from the

source relation.

55

PROJECT""

DUPKEY INSERTTUPLE PUTINLEAFNODE

Figure 23. Basic Structure of PROJECT

The criteria for the select operation are read from the

query tree. Each criterion is passed to GENSELECTLIST which

produces a list of TIDs that satisfy that criterion. The

list is then combined with the previous list, if there is

one, using the operator in the query - either ANDLIST or

ORLIST as is appropriate. The syntax checker, the TREE

module of the RUN module, removes the parenthesis from the

query if any were present and orders the criteria into the

correct evaluation order. The list of selected TIDs con-

tains no duplicates because the TIDs are inserted into the

select list in an ascending order of the relation ID -

attribute ID combination and duplicate TIDs are eliminated.

When the ANDLIST module is called to combine two lists of

56

I

. 4 .

TIDs, it eliminates all TIDs that are not found in both

lists. The ORLIST module combines the two lists using all

of the TIDs of both lists but eliminates the duplicates if a

TID appears in both lists. Therefore, when all the criteria

have been used, the resulting list is the final list of TIDs

that satisfy all of the stated conditions.

Next, the tuples identified by the TID list are read

from the relation file. As each tuple is read from the

relation file it is inserted into the resulting relation

file. Then the attribute values of the tuple in combination

with the TID of the tuple are inserted into the access

structure. The tuples inserted into the relation file are

not checked to see if they are duplicates because it is

assumed that the source relation had no duplicate tuples and

SELECT does not introduce any new tuples or modify the

attribute values of any tuple to cause a duplicate.

The SELECT operation is complete once all of the TIDs

in the selected list of TIDs is processed. The resulting

relation is now available for all operations. The resulting

relation will remain until the program is terminated at

which time all traces of the resulting file will be de-

leted. Figure 24 shows the basic structure of SELECT.

JOIN Module. The JOIN relational operator is act-

ually three different operators: JOIN>, JOIN=, and JOIN<.

The three operators in one all share the same procedure of

defining the resulting relation, selecting the tuples from

the two source relations, and finally inserting the

57

.. o

ECLS ODUL \ Z

Figure 24. Basic Structure of SELECT

resulting tuples into the relation file and the tuples'

attribute values into the access structure.

First, each of the different joins defines the resul-

ting relation by calling DEFTEMPREL. DEFTEMPREL defines the

resulting relation by combining the attribute definitions cf

both of the source relations. If duplicate names exist for

the attributes in the source relations, the name of the

relation is appended as a prefix to the duplicate names. If

the names are still the same, i.e. joining a relation to

itself, suffixes of -1 and -2 are added to the attribute

names to make them unique.

The resulting relation is now defined in the data

dictionary. Next, the appropriate tuples from each of the

58

..

source relations need to be selected and joined together to

form the tuple of the resulting relation. The method of

selecting the appropriate tuples will be discussed later for

each individual join, but first the insertion process will

be described.

After the join determines a pair of TIDs that meet the

criteria provided, the selected tuple from each source file

must be read and the two tuples combined to make a new tuple

of the resulting relation. The TID of the first source file

will be used first to access the tuple in the relation file.

This tuple's attribute values can then be placed in the new

result tuple. Next, the tuple from the second file is read

and its attribute values placed in the resulting tuple.

This creates a tuple that is the combination of the two

source tuples. This tuple can now be inserted into the

resulting relation file. After the tuple is inserted into

the resulting relation file, each of the attribute values in

the resulting tuple is inserted into the access structure so

the resulting file could be used as a source file in later

queries.

No check for duplicates tuples is made because the

design of the joins does not introduce duplicate tuples.

The design of the join operators uses the fact that each of

the tuples in the two input relations is unique (if the

input relations can contain duplicate tuples a check for

duplicate tuples would be necessary). Then the join func-

tion uses one of the input relations as the control. This

59

another purpose. The value of the BAR attribute was main-

tained as the same value in each tuple, causing a leaf page

to overflow to test the ability of both finding values in a

overflow leaf page and also causing the algorithm that makes

room for the inserts in the leaf page to move data to an

overflow page.

The last special case to be tested in the INSERT module

was recognizing a duplicate tuple. So the tuple:

DRINKER = TOM;
BAR = 45;
BEER = 45.9;

was again input into the INSERT module. This tuple was

rejected as a duplicate tuple since its key values were "

already defined in the access structure for this relatiun.

The test of only one key being the same had previously been

done because of the values inserted for the BAR attribute.

Finally, the DRINKERDATA relation had two tuples inserted

that had the same value for DRINKER that had been inserted

earlier with the FREQUENTS relation. This tested the abil-

ity of the INSERTTID module to correctly insert new TID

header records in a leaf page that already existed. This

verified the INSERT module and provided data to be used for

testing the DELETE and MODIFY modules.

DELETE MODULE. The DELETE module has three primary

tasks to accomplish. The first task involves verifying the

relation name provided by the user, verifying the user is

authorized to do deletions, and building the selection cri-

teria. The next task is to use the B-tree and leaf files in

73

value in a leaf and also testing to be sure the B-tree

module was invoked to change the value it contained for this

leaf. The BAR attribute tested the ability of the procedure

LEAFFIND function to find a defined value and recognize it

as a previously defined value. This also tested the ability

of the INSERTTID module to correctly add the TID behind a

previously created TID header and update all appropriate

fields. The BEER attribute tested the ability to insert a

key value in the correct position in the leaf by moving the

other key records to make space for the insertion.

The INSERT module was provided with four more tuples to

be inserted. These tuples caused the first leaf of the leaf

file for the domain for the DRINKER attribute to be filled.

Thus the next tuple inserted caused the first leaf to be

split. This tested the ability to correctly split the key

values and update the appropriate previous leaf and next

leaf fields in the leaf headers. It also tested the BTREE

module to insure its ability to update the B-tree with the

values for the new and old leaf.

The test was continued until a second leaf was caused

to split to insure that the leaf pointers that maintain the

sequential ordering were correctly maintained. One test

that was not completed was testing the BTREE module to

insure that it correctly split its nodes. This was not

tested because of lack of time and the fact that this capa-

bility had been tested previously.

The tuples inserted to cause the leaf to split also had

72

.... -2..

DRINKER TOM;
BAR = 45;
BEER = 45.9;

Now, the real test was ready to begin. The first tuple

inserted tested the ability of the module to recognize an

empty relation file and initialize the relation file before

inserting the tuple. The relation file was examined to

insure the file was initialized correctly and the tuple

correctly inserted. Next, since no B-trees existed both

leaf files and B-trees had to be initialized for the appro-

priate domains. Then the first attribute values were inser-

ted into the leaf and this caused a leaf header record to be

created and a key record inserted. Then the first leaf page

was initialized and a TID header record created followed by

a TID record. Then the BTREE module was called to initial-

ize the B-tree and insert the first value and the leaf

pointer. The disk files were examined to insure that all of

the records in all of the files were correctly initialized

and placed in the files.

The next tuple to be inserted had the following attri-

bute values:

DRINKER = ZURD;
BAR = 45;
BEER = 45.3;

Each attribute value was designed to test a different phase

of the insert algorithm. The DRINKER attribute tested a

boundary condition because it became the largest value in

the leaf thus testing the ability to insert the greatest

71

leaf files, and the B-trees. The procedures that handle the

relation files and the leaf files were more thoroughly

tested than the B-tree functions since the B-tree functions

were supposedly verified during their development (5: 96- --

109). Obviously, the insert algorithms had to be tested and -.*.-

correctly working before the other functions could be

tested. Therefore, the INSERT module testing will be des-

cribed first.

INSERT Module. The first step in testing the INSERT

module was testing the algorithms that verify if the user has

the correct user ID or knows the correct insert security ID.

This was a self checking type of function because if a valid

answer was provided and the function did not recognize it,

then the system stopped processing the command.

The next step of the test was to query the user for a

relation name to be used for the insert. Again this was

self checking because if the function did not recognize the

relation name as valid, an error message appeared. The

procedure was also tested to be sure an error message ap-

peared and processing ceased when a known undefined or bad

relation name was given. Once the relation name is valid-

ated, the system requests the attribute values of the tuple

to be inserted. The values are printed back out on the

screen after entered by the user to verify they were trans-

lated and received correctly by the system. The first tuple

to be inserted was for the relation FREQUENTS and had the

following values:

70
-p *- - -. ~ -.

.

These relation definitions were selected because they

provided attributes of every domain type and a different

amount of keys. These characteristics are important consid-

erations in further testing.

The verification of the definitions of the data defini-

tion module was done by examining the definitions as written

on the disk file called SETUP.DAT. Since this module had

just been converted, the format of a correct definition was

known and was compared to the existing definitions. One

important element of the definition that was checked was the

system supplied relation ID. The verification of this was

done by first defining the relation, FREQUENTS, and saving

the definition on disk. The program was then rerun and the

definition of the relation, DRINKERDATA, was added and the

definitions stored. The second definition did have the

proper ID of R00002. This was significant because of the

fact that it proved that the algorithm used to determine the

greatest relation ID previously used functioned correctly.

The verification of the data definition module provided

some domain and relation definitions. These definitions

will be used for the testing of the next module, the Edit

module.

Edit Module Testing

The verification of the Edit module involved testing

the INSERT, DELETE, and MODIFY functions. These functions

involve manipulating the data in the relation files, the

6.

69 "' "

modules could begin.

The testing of the data definition module consisted of

defining five different domains and two relations. The

domain definition consists of the name of the domain, the

domain type, and the maximum size in characters. The test

domains were:

DRINKER, Char, 30 characters;
BAR, Integer, 10 characters;
BEER, Real Number, 5 characters before the decimal

point and 5 characters behind the decimal point;
ADDRESS, Char, 20 characters;
COMMENT, Text, 30 characters.

The domains were defined and then two relations were

defined using these domains. The sort orders of the attri-

butes in the relation are not used so the definition of the

sort orders was not thoroughly tested. The relation's defi-

nitions consisted of the name of the relation, the name of

the attributes (the domain of the attribute will be shown in

parenthesis), any constraints of the attribute value, the

owner ID for the relation, and the security IDs for reading,

inserting, deleting, and modifying. Also, the attributes

that form the key for the relation were defined. The fol-

lowing are the relation definitions used:

Relation Name = FREQUENTS; Attributes = DRINKER (DRINKER),
BAR (BAR), BEER (BEER); Constraints = BAR must be
< 100; Owner ID = TGK; No security IDs were defined;
Key = DRINKER, BAR.

Relation Name DRINKER DATA; Attributes DRINKER
(DRINKER), ADDRESS-(ADDRESS), COMMENT (COMMENT);
No Constraints; Owner ID = TGK; Read ID = READ;
Insert ID = INSERT; Delete ID = DELETE; Modify ID
MODIFY; Key DRINKER.

68

IV. Verification and Validation

Verification and validation are important steps in the

development of a system. Verification is the process of

testing the system to ensure each set in the processing

produces the expected response. Validation ensures that the

system functions meet the prescribed requirements. Pri-

marily, verification of the system will be described because

of the lack of true requirements to be validated.

The verification of functions can be done in different

ways. The method of testing every case or exhaustive tes-

ting was not feasible, so the test cases selected were

selected either to provide a boundary value analysis or to

ensure that every logic path was executed at least once.

The functions being tested and the test cases will be des-

cribed in the following paragraphs.

Data Definition Testing

The first task of the system development was to convert

the existing code from UCSD Pascal to Pascal/MT+. Success-

ful compilation was the primary verification used at this

time. The converted code was more completely tested during

the verification of the functions that were developed during

this thesis effort. The one exception that was verified at

this time was the data definition facility. This module

defines the domains and relation. These definitions had to

be present in the data dictionary before testing of other

67

in this chapter. Next, the procedures used to test the

access structure modules and relational operators will be

discussed.

66

. . . .". o

very similar to the JOIN> operator. The only difference is

that the processing of the second relation starts at the

next larger key than the first relation and continues

through all the remaining larger keys instead of starting at

the smallest key value and continuing to the value of the

first relation. This process does not provide any duplicate

tuples, thus allowing the insert portion of the algorithm to

not check for duplicate tuples.

PRODUCT. The PRODUCT module is not currently

implemented, but the design of algorithm is obvious from the

JOIN operators. To provide a product, the first relation

would be processed once for each key and the second relation

processed for all the key values for each key of the first

relation. Once again, this method avoids the problem of

having to check for duplicate tuples because none are

introduced.

Summary

The implementation of the relational database consisted

of the following main tasks, converting the existing code;

designing and implementing the access structure and the

modules to manipulate the access structure; and designing

and implementing the algorithms to provide the relational

operators. The details of converting tne existing code and

the problems that arose during further development of the

system are documented in Appendix A. The implementation of

o*.. the access structure and relational operators were described

65

finding the TID header of the first relation. As long as

the second value is less than the retained value of the

first, the processing continues. If the second value is

less than the first value, then FINDTID is called to find

the TID header of the second relation. When a TID header is

found for the second relation, then each TID of the second

relation is combined with each TID of the first to form TID

pairs. Thez- -Pairs can now be used to access the relation

files and form tuples of the resulting relation which will

be inserted into the relation file and the attribute values

inserted into the access structure. The TID pair is com-

pletely processed before the processing of the first or

second relation continues.

The processing of the second relation would continue

until the key value becomes equal to the last value pro-

cessed for the first relation. When this condition occurs

the next key is processed for the first relation and the

processing of the second relation starts from the first leaf

again. This processing continues until the first relation

processing has processed all the keys. This method of using

the first relation as the control and repeatedly processing

the second relation does not provide any duplicate tuples in

the resulting relation.

JOIN<. The JOIN< operator selects the tuples

from the source relations where the attribute value of the

first relation is less than the attribute value of the

second relation. The processing of the JOIN< operator is

64

I~~~~~~ ~~~~~~~ .' - * . . .-

JOINLTGT

Ii

I I
GETLEAF FINDTID

GOODTUPLE INSERTTUPL PUTINLEAFNODE

Figure 26. Basic Structure of JOINLTGT

FINDTID searches the leaf page for a TID header record that

contains the relation ID of the first source relation and

the attribute ID of the chosen attribute. If an appropriate

TID header record is not in the leaf page, then the next key

record is read and its leaf page searched. When a TID

header record is found for the first relation, the TIDs

associated with the TID header are stored and the value of

the key is kept.

The processing of the second relation now begins by

reading the first leaf and reading the first key record.

The value of the key is compared to the value retained from

63

. .°-.

used to access the source relations and produce the tuple of

the resulting relation which would be inserted as described

previously.

The access structure chosen provides an easy method of

providing the equi-join. The TIDs for the same attribute

value are stored in the same leaf page. So the leaf pages

only need to be searched for the first relation identifier

in a leaf page. If the first relation identifier is found,

then the leaf page is searched for the second relation

identifier. If the second relation is found then the TIDs

for both relations are retrieved and the tuples of each

relation retrieved and combined to form the tuples of the

new relation. Again, each tuple from the first relation is

e 0combined with each tuple of the second relation only once to

insure no duplicate tuples in the resulting relation.

The JOIN> and JOIN< operators are very similar.

Thcrefore, they were combined in one module called JOINLTGT

to share common procedures. Figure 26 shows the structure of

the JOINLTGT module. The following paragraphs discuss the

actual operators JOIN> and JOIN<.

JOIN>. The JOIN> operator selects the tuples

from source relations where the chosen attribute value of

the first relation has a value greater than the second

relation's chosen attribute value. The algorithm accom-

plishes this by getting the first leaf. It reads the first

key and uses the pointer to the leaf page to call FINDTID.

62

FINDTID is then called to determine if a TID header exists

for the first source relation and its chosen attribute. If

there is a TID header record present for the first relation,

the rest of the leaf page is searched to see if there is a

TID header for the second source relation. If the second

relation does have a TID header, the condition is satisfied

so each TID that is associated with the first TID header is

combined with each TID of the second TID header to form a

TID pair.

SGETLEAF FINDTID

GOODTUPLE INSERTTUPLE PUTINLEAFNODE

Figure 25. Basic Structure of JOINEQ

This TID pair gives the tuple identifiers of a tuple

from each relation that when put together will form a tuple

in the resulting relation. If either of the TID headers

were not found, then the search in that leaf page is stopped

and the next key record is read. The TID pair can then be

61

.'- ' . ". " "-"..

means that each tuple of the control function is compared to

all the tuples of the other input relation to see if the

join condition is satisfied.

After all the tuples of the other input relation are

compared, the next tuple of the control function is re-

trieved and the process begins again. This means that each

tuple in the control relation is compared to the tuples of

Ak the other input relation only once. Since all of the tuples

in both input relations were unique, combining tuples from

the input relations will not cause duplicate tuples unless

the same pair of tuples in combined twice. But the use of

the control procedure only allows a tuple from the control

relation to be used once with each tuple of the other rela-

tion; thereby, eliminating any possible duplicate tuples in

the resulting relation.

JOIN=. The JOIN= operator selects the tuples from

the source relation where the chosen attributes have the

same value. The module JOINEQ is called to provide the

JOIN = operator. Figure 25 shows the structure of the JOINEQ

module. To find the same value of the attributes, the first

leaf for the defined domain is read into the buffer (remem-

ber the first leaf is block 0). The first key is then

accessed to provide the leaf page pointer. The relation IDs

of the source relation are compared and the smaller ID is

used first since the TID headers are stored in an ascending

order based on the relation ID and then the nttribute ID.

60

conjunction with the selection criteria to provide a list of

TIDs. The last task is to delete the tuple associated with

each TID from the relation file and delete the attribute

values from the leaf files and if necessary call the B-tree

delete module.

The procedures that validate the relation name and

validate the user as a valid user for the given function had

been tested in the INSERT module test. So the building of

the selection criteria from the user's input was the first

function to be tested. This test is a self documenting test

since the module displays the selection criteria for vali-

dation by the user. Next, the selection criteria had to be

used to select the appropriate TIDs from the access struc-

ture.

The testing of the remaining tasks of the DELETE module

was dine in two phases. The first phase just tested the

capability to select the appropriate TIDs with the selection

criteria. The second phase of testing then took the TIDs

and performed the necessary deletion from the relation file,

leaf files, and B-trees.

The GENSELECTLIST is the module that contains the algo-

rithms to implement the selection criteria. To provide a

complete test of the module, several different test cases

were run using the FREQUENT relation. The first case was

find all TIDs where DRINKER = TOM. This case tested the

equal selection phase. Next, a single less-than condition

74

and a single greater-than condition were tested. When each

of the single conditions was successfully tested, the case

of a compound condition using an OR was tested and this was

followed by the test of the AND condition. The final test

was to provide a compound criteria for one attribute and

provide a compound criteria for a second attribute. This

causes the selection criteria to combine selected lists from

separate attributes, thus testing the final process of the

GENSELECTLIST module. The results of these tests were man-

ually matched against the tuples in FREQUENTS to insure

proper selection. This completed the testing.

Now the second phase of the testing could begin. The

first step was to use the first TID and retrieve the tuple

associated with it. This tuple is then displayed to the

user to allow the user to validate that this tuple should

be deleted. This also insured that the tuple was retrieved

correctly from the relation file.

The selection criteria were carefully selected so the

tuples selected tested the following conditions when the

attribute values were deleted from the leaf file.

1. Delete the largest value of a leaf which causes the
value for the leaf to be changed in the B-tree.

2. Delete a leaf value that is not the largest value
in the leaf to insure the key records are properly
moved to eliminate the deleted key record. This also
tested the ability to delete not only a TID record from
the leaf page but also the TID header.

3. Delete a TID value from an overflow leaf page.

4. Delete a complete leaf. This required the delete
algorithm to properly maintain the next and previous

75

• -, - - "" " . '" - '.,...-,v. ..---.. . .-- ,.. - -...'.---.' . .--.. . - . - >. < -,, --- ,.-.- ,

leaf pointers in the leaf that sequentially fall before
and after the deleted leaf. Also, this caused the B-
tree delete function to be tested in the removal of a
B-tree record from a B-tree node.

These test cases were completed to verify that the

DELETE module did perform correctly. Again, the B-tree

delete procedures were not thoroughly tested. Further -"-

work with the system should thoroughly verify that the B-

tree delete functions do work correctly for all cases.

MODIFY Module. The verification of the MODIFY module -.

was almost complete when the INSERT and DELETE modules were

verified. The only procedure that had not been previously

tested was modifying the tuple in the relation file. There-

fore, the test cases were primarily tests to insure that the

tuple was correctly modified in the relation file and then

the appropriate attribute values were deleted from the leaf

file and the new attribute values from the modified tuple

were inserted.

Retrieve Module Testing

The Retrieve module consists of the many modules that

implement the ability to retrieve data from the database.

Among the functions of the Retrieve module are the functions

to edit and manipulate a file of queries. Also, the ability

to display the tuples of a relation is included as a func-

tion of the Retrieve module. These functions did not

require intensive testing since their results are not

critical to other procedures and the results are all self

documenting.

76

.....-.............. ' -... .

' - Nwrr I . I.............

The critical modules of the Retrieve module are the

Optimize module and the Run module. The Run module consists

of the procedures to implement the relational operators and

perform the queries. The Optimize module performs the query

optimization as described by Roth (6). Previous verifi-

cation of the optimize module had been done, so the only

testing done was to validate that the optimization routines

did work as prescribed. This validation was attempted with

the following queries:

JOIN FREQUENTS, DRINKERDATA WHERE DRINKER = DRINKER
GIVING rell

PROJECT rell OVER FREQUENTS-DRINKER,ADDRESS,BAR
GIVING rel2

SELECT ALL FROM rel2 WHERE
FREQUENTS-DRINKER > PETE GIVING rel3

When the Optimization module started the procedure of

(0 pushing the select down the query tree, the system responded

with a "recursive stack overflow" message. Several attempts

were made to try to redefine the procedures called into

different overlays to overcome this problem, but no solution

was found. Therefore, the Optimization routine procedures

were not fully validated. Since the primary focus during

this thesis effort was to make the system operational, the

individual procedures that implement the relational opera-

tors were tested to verify that the system was operational

in a limited version. Also, when the recursion stack prob-

lem can be fixed, the system should become fully operational

since the procedures to implement the relational operators

will have been verified.

77

.....d d,,mdn6h~adm~,idmmni

The primary focus of the testing of the relational

operators was that the operator could correctly define the

resulting relation and then select the correct information

to be inserted into the resulting relation. The insertion

procedures for all of the relational operators are the same

procedures used to implement the INSERT module so they had

been previously verified. Therefore, the insert procedures

were not scrutinized as closely as the other procedures

mentioned above.

The following are the relations and their tuples used

during the testing of the relational operators.

Relation = FREQUENT
DRINKER BAR BEER

#1 AL 45 45,366
#2 TIM 45 45.666
#3 TOM 44 35.466
#4 TOM 45 45,366
#5 ZURD 45 45.98

Relation DRINKER DATA
DRINKER ADDRESS COMMENT

#1 ALICE WHO KNOWS NONE
#2 JOE CC 454545 LIBRARY DESK STUDYSTUDY
#3 TIM 1122334455 AFIT ROAD NO COMMENT
#4 TOM 4545 NATIONAL LANE Tom's Comment
#5 TOM K 6767 WHO CARES LANE NO COMMENT
#6 ZURD 23 AFIT 23 NONE

The relations used were the relations defined during

the test of the data definition module. The information

contained in the relations is nonsensical data made up only

for test purposes. The data does provide some good test

cases because some very similar attribute values are used.

This was done to insure that the selection modules can

78

.......................... . .. A

distinguish between names such as TOM and TOM K. The first

relational operator tested was SELECT.

SELECT. The SELECT module was thoroughly tested by

using five different test cases. The first case tested the

ability to select when the condition given was an equal

condition. The condition used was

SELECT ALL FROM DRINKERDATA WHERE DRINKER = TOM
GIVING rell

This query required the module to define the new relation,

rell, as a temporary relation in the data dictionary before

actually processing the query. The definition phase was

carefully examined by using the INVENTORY module to insure

the definition was correct. The result from this query was

the single tuple, TOM, 4545 NATIONAL LANE, Tom's Comment.

This verified that the selection process was working cor-

rectly since the tuple with DRINKER = TOM K was not selected

even though it had the desired value as part of its value.

The test cases that followqd checked the > condition,

the < condition, combining two selects with an AND, and

combining two selects with an OR. The cases using the AND

and OR were tested with the selection criteria selecting

values both from the same attribute and from different

attributes. The following are some of the test cases suc-

cessfully run:

1. SELECT ALL FROM FREQUENTS WHERE
DRINKER > TIM AND DRINKER < ZURD GIVING RELI

2. SELECT ALL FROM DRINKER DATA WHERE
ADDRESS > 45 OR NAME < KURT GIVING REL"

3. SELECT ALL FROM FREQUENTS WHERE
BEER = 45.366 AND BAR < 45 GIVING REL-

79

..................

The result of the first select was the tuples: TOM, 44,

35.466 and TOM, 45, 45.366. The result of the second select

with multiple conditions was the following tuples: ALICE,

WHO KNOWS, NONE; JOE COOL, 454545 LIBRARY DESK, STUDYSTUDY;

TOM, 4545 NATIONAL LANE, Tom's Comment; and TOM K, 6767 WHO

CARES LANE, NO COMMENT. The duplicate tuple was removed

thus showing that the OR combination was working success-

fully. The last multiple condition test returned a relation

with no tuples which showed that the AND condition was

successfully combining the results from the separate condi-

tions to form the compound condition.

PROJECT Module. The PROJECT module was tested with

the following cases:

1. PROJECT FREQUENTS OVER DRINKER GIVING REL"
2. PROJECT FREQUENTS OVER BAR GIVING RELI
3. PROJECT FREQUENTS OVER DRINKER,BAR GIVING RELI
4. PROJECT FREQUENTS OVER BEER, BAR GIVING REL-

The first two tests were to test the ability of the routine

to recognize and eliminate the duplicate tuples. The third

test was to insure that more than one element could be

handled correctly. The final test was to insure that

the procedure would insert the attribute values in the

correct order in the tuple since this is a different or-

dering of the attributes than is contained in the source

relation.

The first result checked was the data dictionary defi-

nition of the resulting relation. When the definition was

verified correct, then the remaining portion of the PROJECT

80

.7 .

module was allowed to execute. The results of the final

case are shown below to illustrate the results of the

PROJECT module.

Relation = REL-
BEER BAR

#1 35.466 44
#2 45.366 45
#3 45.666 45
#4 45.98 45

JOIN Module. The JOIN module actually has three

different joins. The three joins are the JOIN=, JOIN< and

the JOIN>. The first test of the JOIN module was to insure

that the resulting relation was correctly defined as a

temporary relation in the data dictionary and the name of

each attribute was unique. This test was performed with the

* query:

JOIN FREQUENTS, DRINKERDATA
WHERE DRINKER = DRINKER GIVING RELl.

A join with an equal condition was used here but that did

not matter for this test since only the data dictionary

definition was being checked.

The results in the data dictionary did show that the

RELl was correctly defined and that the two attributes with

the name DRINKER were correctly identified as FREQUENTS-

DRINKER and DRINKERDATA-DRINKER. Another test was done

where a relation was joined with itself to insure that the

unique name generator did work correctly. This time all of

the names were the same even after adding the relation name.

* .Therefore, the names had to be suffixed with a -1 and -2 to

81

* .~did"

make them unique. The next step in the testing of the JOIN

module was to test the individual join operators.

JOIN=. The equal condition of the join was

tested with the following query.

JOIN FREQUENTS, DRINKER DATA WHERE
DRINKER = DRINKER GIVING RELI

The procedure has to first select the tuples from each

rela-ion that satisfy the equal condition and then combine

the tuples from the two relations into a new tuple for the

resulting relation. The results from this query were:

Relation = RELI
FREQUENTS-DRINKER BAR BEER

DRINKERDATA-DRINKER ADDRESS COMMENT

#1 TIM 45 45.666
TIM 1122334455 AFIT ROAD NO COMMENT

#2 TOM 44 35.466
TOM 4545 NATIONAL LANE Tom's Comment

#3 TOM 45 45.366
TOM 4545 NATIONAL LANE Tom's Comment

#4 ZURD 45 45.98
ZURD 23 AFIT 23 NONE

The results of this test show how the tuples were

combined to form a tuple of the new relation. The results

also showed that the procedure correctly combined both

tuples of the first relation that contained TOM with the

single tuple in the second relation. This tested the equal

condition, therefore the basic principles of the join opera-

tor had been verified but now the other conditions needed to

be tested.

JOIN>. The JOIN> condition was tested with the fol-

lowing query.

82

..

---- -.-.-..-.. ..-........-.

JOIN DRINKER DATA, FREQUENTS WHERE

DRINKER-> DRINKER GIVING RELl

This a join with a condition where the value of the attri-

bute in the first relation should be greater than the attri-

bute value in the second relation for the tuples to be

selected. The results of this test were:

Relation = REL"
DRINKERDATA-DRINKER ADDRESS COMMENT

FREQUENTS-DRINKER BAR BEER

#1 ALICE WHO KNOWS NONE
AL 45 45.366

#2 JOE COOL 454545 LIBRARY STUDYSTUDY
AL 45 45.366

#3 TIM 1122334455 AFIT ROAD NO COMMENT
AL 45 45.366

#4 TOM 4545 NATIONAL LANE Tom's Comment
AL 45 45.366

#5 TOM 4545 NATIONAL LANE Tom's Comment
TIM 45 45.666

#6 TOM K 6767 WHO CARES LANE NO COMMENT
AL 45 45.366

#7 TOM K 6767 WHO CARES LANE NO COMMENT
TIM 45 45.666

#8 TOM K 6767 WHO CARES LANE NO COMMENT
TOM 44 35.466

#9 TOM K 6767 WHO CARES LANE NO COMMENT
TOM 45 45.366

#10 ZURD 23 AFIT 23 NONE
AL 45 45.366

#11 ZURD 23 AFIT 23 NONE
TIM 45 45.666

#12 ZURD 23 AFIT 23 NONE
TOM 44 35.466

#13 ZURD 23 AFIT 23 NONE
TOM 45 45.366

The results showed the selection criteria and combination

algorithm both worked to create the tuples of the new rela-

tion for the JOIN>.

JOIN<. The JOIN< condition is the condition

when the attribute value of the first relation has to be

less than the attribute value of the second relation for the

83

........ S. ~~~- . ..

tuples to satisfy the selection condition and be combined to

form a tuple in the resulting relation. The query used to

test this condition was the following query.

JOIN FREQUENTS, DRINKERDATA WHERE
DRINKER < DRINKER GIVING REL

The results of this test were the same as the test for

the JOIN> except the FREQUENT part of each tuple was listed

first in the resulting tuple. This showed that the JOIN<

and all the JOIN modules do perform correctly.

Summary

The testing of the system was performed in a very

limited environment because the memory space for the data

dictionary and other linked lists was very limited. That is

why only two relations were defined and very limited amounts

of data were in each relation. Because of the memory lim-

itations, the complete validation of the system could not be

completed, although most operators and functions were

validated.

The processing time of some processes was excessive

because of the great amount of overlaying of memory necess-

ary. The overlaying is necessary to provide at least a

small amount of memory for the data dictionary and other

dynamic memory allocations used in the system. Even with

all of the limitations of time and memory space, the testing

of the system proved that the AFIT relational database

system was operational for limited applications.

84

...................... ~ ~ ~ ~ ~ ~ ~ ~ '.

V. Conclusions

The goal of this thesis was to design and implement a

relational database on a microcomputer. This specifically

involved the design of a low level access structure and

implementing the relational operators. The low level access

structure was implemented but during the testing of the edit

modules it became obvious that processing time was becoming

a problem.

The factor of slow processing time was the result of

having insufficient memory in the microcomputer (64K). The

insufficient memory caused the use of numerous program over-

lays to be able to make the system functional. The overlays

created a great deal of system overhead to handle the read-

ing of the overlays from disk and placing the overlays in

memory. Thus, the result was very slow processing time.

The shortage of memory also caused the relational oper-

ators that were implemented to be tested only in a very

limited environment of very small amounts of data. Also,

the optimization of the queries could not be tested because

of the lack of memory space. Thus, no validation of the

optimization routines could be performed. Therefore, no

analysis could be performed on the efficiency of the opti-

mizied queries performance versus the unoptimized queries

performance. Thus, there are several areas that remain for

future research.

85

....) (., ., . ., , - , - . .. - , . , . , ., . .,.

Recommendations

Due to the limited computer and time environment in

which this development was conducted, there are many

areas that need further development or research. These

recommendations are:

(1) Implement the DIVIDE, UNION, DIFFERENCE, PRODUCT,

and INTERSECT relational operators to provide the complete

set of relational operators described by Roth (6).

(2) Determine the amount of data necessary in a

relation to make it more efficient to use the access

structure rather than just accessing the relation directly.

(3) Develop reorganization algorithms to eliminate the

wasted space in the relation and leaf files created when

records are deleted or redefine the leaf and relation file

structures.

(4) Convert the data dictionary from the linked list

structure to relations stored in the database and implement

any special access routines for initializing the system.

(5) Develop some scheme for backup capabilities of the

relation, B-tree, and leaf files to allow recovery from a

system crash during a data modification operation.

(6) Consider the possibility of developing a different

set of relational operators that operate on the intermediate

relations of a query tree to provide faster processing tin.e

of queries. This should include a study of the possible use

of the co-ordinating operator constructor's preferred sort

orders in processing the intermediate relations.

86

(7) Provide the ability to transfer data from one

relation to another allowing the data from a temporary

relation to be saved for later use.

(8) Investigate possible alternatives to the access

structure now used to see if a more efficient access method

might be possible.

(9) Insure the data integrity of the relation during

the modification of data in the MODIFY operation.

(10) Explore the concept of including the insert,

delete, and modify operations in the relational operators.

(11) Develop batch interface capabilities so that

another computer could interface more directly to the

system.

(12) Overcome the memory overlay problem by converting

to a computer with more memory. Some possible solutions are:

a) Convert to LSI-11/23 with extended memory.

This would be compatible with other work done.

b) Move to Z-100 with 16-bit Pascal under MS-DOS.

This would make it compatible with the government

standard microcomputer.

c) Move to VAX to complete the implementation of

the system. This would allow complete analysis of

the performance of the system but does lose the

objective of being microcomputer-based.

(13) Perform extensive performance analysis of the " -

system to include instrumenting the code, providing a

87

IRD-Ai5i 770 IMPLEMENTATION AND ANALYSIS OF A MICROCOMPUTER BASED 2/2
RELATIONAL DATABASE SYSTEM(U) AIR FORCE INST OF TECH

I IRIHT-PATTERSON AFB OH SCHOOL OF ENGI.. T G KEARNS

UNCLASSIFIED6DEC 4 AFIT/CS/ENG/84D-i2 F/G 9/2 NLEh EEE hE
MENEEEhh

.

IIIH' 4 1111 8

IIIJL25 ffL flb

MICROCOPY RESOLUTION TEST CHART

NAI1flNAL OtIRFAUI Nl M4NN9M 196' A

benchmark database, and doing simulation and modelling of

the system.

(14) Extend the system to include

- subschemas
- multi-user capability
- network DBMS mode
- connection as backend to a host

Conclusion

The implementation of the AFIT relational database on a

microcomputer was successful. However, the implementation

has limitations. Some of the limitations are: poor perform-

ance due to the requirement for numerous program overlays,

insufficient memory space for query optimization, and lack

of complete implementation of all relational operators. In

spite of the limitations, the AFIT relational database

system does provide an operational relational database

management system; however, the system's real value is as

a pedagogical database for future students.

88

~~~~~~................................................'-.,.-...,,,,. ddha......... ....... ' ......... )..



Appendix A: Pascal/MT+

Pascal/MT+, version 5.5, was the system used to sup-

port the development of the relational database system.

Pascal/MT+ supports all of the standard Pascal features and

has some extensions to the standard Pascal. The extensions

to the standard Pascal used during this development and some

of the problems encountered with Pascal/MT+ will be

discussed.

The Pascal/MT+ system operates on a machine using the

CP/M operating system, version 2.0 or later. The Pascal/MT+

system was selected for development because it very closely

matched UCSD Pascal which had been used for previous devel-

opment. But Pascal/MT+ provides greater ability to use

program overlays, thus somewhat relieving the memory space

problem encountered during previous development of the rela-

tional database system.

Pascal/MT+ Unique Features

The features described below are not all of the unique

features supported by the Pascal/MT+ compiler; only the

features used during this development. The main feature of

Pascal/MT+ used was its string handling capability. A

string in Pascal/MT+ is a defined type. The string is like

a packed array of characters in which byte 0 contains the

dynamic length of the string and bytes 1 through n contain

89



characters. The default length of the string is 80 but may

be defined to be from I to 255 characters in length.

The string type also allows the comparison of two

strings even though the strings are defined as different

lengths. The functions described below are provided by -- -

Pascal/MT+ for handling strings. It should be noted that

these functions are almost identical to the string handling

functions found in UCSD Pascal.
h

First, the syntax of the procedure or function will be

shown and then a brief description of its action will be

provided.

FUNCTION LENGTH(STRING):INTEGER;
This function will return the intege value of the
length of the string.

FUNCTION CONCAT(SOURCE-A,SOURCE-B,...,SOURCE-N):STRING;
This function returns a string in which all of the
sources are concatenated. The sources may be
string variables, string literals, or characters.

FUNCTION POS(PATTERN,STRING):INTEGER;
This function returns the integer value of the
position of the first occurrence of PATTERN in the
STRING. STRING is a string and PATTERN can be a
string, a character, or a literal.

PROCEDURE DELETE(STRING,INDEX,SIZE);
This function removes SIZE characters from STRING
starting at the byte named by INDEX. STRING is a
string. SIZE and INDEX are integers.

Pascal/MT+ supports a form of random file access that

is supported by CP/M, version 2.0 and later. This ability

to randomly access files has been used in the development of

this database system. Also, the ability to extend files or

append to files is supported by Pascal/MT+. This capability

relieves the need for most of the overflow file fields built

90
............................................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .



in the data structures. The overflow fields were left in

the data structures to allow for the possibility of later

transfer to a system that does not allow dynamic file growth

and overflow files would be needed. The following proced-

ures were used for file handling.

PROCEDURE ASSIGN(FILE,NAME);
This procedure assigns an external file name to a
file. FILE is a defined file name of any file
type. NAME is a literal or variable string
containing the name of the file.

PROCEDURE BLOCKREAD(FILE,BUFFER,IOR,SIZE,RB);
PROCEDURE BLOCKWRITE(FILE,BUFFER,IOR,SIZE,RB);

These procedures provide direct CP/M
disk access. FILE is an untyped file. BUFFER is
an array of characters which is large enough to
hold the data. IOR is an integer which receives
the returned value from the operating system indi-
cating if the operation was successful or indicat-
ing the error that occurred. SIZE is the number
of bytes to be transferred and must be a multiple
of 128. SIZE and BUFFER are related in size
because BUFFER must be as large as SIZE. RB is
the relative block number of the file. Each block
is 128 characters. Since 512 characters is 4
blocks, if 512 characters are written to a file at
relative block 0 the next time data is added to
the file it would need to start at block 4 so as
not to destroy the previous data. The data is
transferred to or from the users BUFFER variable
for the specified number of bytes.

PROCEDURE CLOSE(FILE,RESULT);
This procedure closes FILE and returns the integer
RESULT. FILE is a file. This procedure guaran-
tees that data written to a file is properly
purged from the file buffer to the disk. RESULT
is an integer returned by the operating system to
indicate if the CLOSE was successfully completed
or if an error occurred in closing the file.

FUNCTION IORESULT : INTEGER;
The IORESULT returns an integer from the operating
system which is altered after every CP/M file
access. This integer indicates if the file
operation was successful or provides an indication
as to what the error was.

91

. -. . < . .



Compiling and Linking Programs

Pascal/MT+ allows modular compilation of separate mod-

ules and also provides the user the ability to use program

overlays. To be able to use these capabilities, the pro-

grams written using Pascal/MT+ contain some extra words and

numbers not normally seen in a Pascal program. One of the

reasons Pascal/MT+ was used was for its ability to provide

memory overlays in execution. This allows the computer to

store the unused program segments on disk rather than in

memory. The first thing used to provide overlays is a

modular approach. This means that one main program is

written and then modules are added. The main program will

reside in memory at all times while the program executes and

the modules are overlayed in main memory.

The program requires one extra type of statement to

allow this modular approach. This is a statement called

EXTERNAL. Any procedures or functions that are referenced

in the main program must either be contained in the main

program or have an EXTERNAL statement that provides the

header for the procedure or function. Included in this

EXTERNAL statement is a number in brackets. This number

provides the overlay number in which the procedure can be

found. An example of the EXTERNAL statement would be:

EXTERNAL [15] PROCEDURE TEST(X:INTEGER;DONE:BOOLEAN);

The modules that are not included in the main programs

have to have the statement MODULE and a name as the first

statement in order to compile. The module's last statement

92

d~ ~ ~ ~ ** ~ .*.-. . . .~ .. * . .



is MODEND. These statements are equivalent to the PROGRAM

and END in the main program segment. The module may refer-

ence procedures and functions not included in the module.

But just as in the main program, any functions or procedures

not included in the module must have an EXTERNAL statement

to name them. The modules may call functions or procedures

that are in other modules. This also means that one overlay

may call another overlay.

The Pascal/MT+ system provides the linker to link these

compiled modules into a single program or into overlays.

Since extensive use of overlays was necessary, a brief des-

cription of the commands used to link the modules into

overlays will be provided. The following example shows the

commands necessary to link a program and three overlays:

1. LINKMT MAIN,FPREALS/S,PASLIB/S/D:8000/X:2000/Vl:4000/V2:6500
2. LINKMT MAIN=MAIN/0:2,OVERLAYI,PASLIB/S/P:4000/X: 10
3. LINKMT MAIN=MAIN/O:B,OVERLAY2,PASLIB/S/P:4000/X:900
4. LINKMT MAIN=MAIN/0:12,OVERLAY3,OVERLAY4,PASLIB/S/P:6500/X:50

The first command links the main program. The extra files

FPREALS and PASLIB are Pascal/MT+ libraries that contain

run-time functions. The /D:8000 indicates that the program

data area should start at 8000 hexidecimal. Note that all

the numbers expressed in the link commands are in hexi-

decimal. /X:2000 means that the heap should start 2000

hexidecimal bytes from the end of the main program data

area. This space is used to provide the data areas for the

overlays. The next two parameters in the first command are

the overlay area indicators. The V1 indicates that all

93

........... ~ **--: ~ .N %.



overlays in overlay group I will be loaded into memory

starting at memory location 4000 hex. Overlay group 1

includes overlays 0 thru 15 decimal as they are numbered in

the EXTERNAL statements or 0 thru F as they are numbered in

the link commands. V2 indicates the starting position for

overlay group 2. Any overlay group not represented by a /V

parameter receives the same starting position as overlay

group 1.

Commands 2 thru 4 show the command used to link the

overlay modules. The MAIN=MAIN/O:* parameter names the name

of the main program segment. The /0:* states that this is

an overlay and the hexidecimal number that goes in the place

of the asterisk indicates the number of the overlay. Remem-

i0 ber that the overlay number is in hexidecimal here but in

the EXTERNAL statements in the code the numbers are in

decimal. Next, the name of the module or modules to be used -

to create this overlay are listed. Following that the run-

time library is searched for any run-time procedures that

might need to be included. The /S following the name of the

library means that only the modules of the library that are

needed are used. /P indicates the starting position for the

module. This has to match the appropriate /V parameter in

the first link command. The /X parameter is supposed to

allow an offset from the end of the main program's data area

for the overlay's data area.

The /X command was found to be nonfunctional in the

94



overlay link commands. Thus, if one overlay called another

overlay their data was stored in the same location. This

problem plagued the development effort for several weeks

before it was determined that this was the cause of the

problem. The method used to counteract this problem was to

include a dummy procedure with a dummy array of characters

at the start of each overlay module. By including and

adjusting the size of the array, this problem was overcome.

An example of the procedure that was added to each module

follows:

PROCEDURE DUM;
VAR DUMMY:ARRAY[O..1000] OF CHAR;
BEGIN END;

The array size has to be adjusted by using the data size

returned when a program is linked but remember the number
I

returned from the linker is in hexidecimal and should be

converted to decimal for this dummy array to be correctly

dimensioned. If a new version of the linker is obtained

that has this problem fixed, these dummy procedures should

be removed.

The one remaining feature that should be mentioned is

the compiler toggles. Several compiler toggles are used in

the code to provide a flag to the compiler during compila-

tion. These flags all should be on a line by themselves and

they start with (*$ and end with *). The important ones

used are (*$S+*) which when used as the first line in a

program or module (before the word PROGRAM or MODULE) indi-

cates that this is a recursive routine or contains recursive

95

...................................................



routines and (*$E+*) or (*E-*). (*$E-*) tells the compiler

to not put the names of the following procedures in the

external name table. This means that the names following

the (*$E-*) cannot be used in an EXTERNAL statement.

(*$E+*) restores the compiler to its default condition of

placing all procedures names in the external name table.

The features described above are some of the unique

features of Pascal/MT+. These features make Pascal/MT+ very

similar to UCSD Pascal, the language from which the system

was being converted. But UCSD had some features that did

not have a command in Pascal/MT+ that would exactly map to

the UCSD command. The two important commands from UCSD that

did not have a corresponding command in Pascal/MT+ were MARK

and RELEASE.

MARK and RELEASE are UCSD Pascal's method of being able

to return memory that has been dynamically allocated during

execution. MARK is used first before the memory is allo-

cated. It stores a memory address that is the current

memory address from where the dynamic memory or heap will

grow. RELEASE takes the memory address and returns to the

system all of the heap above this address. This does not

allow for only returning individual segments in the heap.

To allow these commands to work in Pascal/MT+, new functions

were constructed that performed these same functions by

retrieving the top of heap address from the system and then

storing this value using the MARK. RELEASE replaced the

96

... . C,.".. .
.-. •~~~~~~.. .°.--.....*.... ... .°...°..... ,.. -.. °.... . . . . .-..- -'. .,.



current top of heap value stored in the system by the value

stored during the MARK command.

The MARK and RELEASE command were implemented to ease

the conversion from UCSD Pascal to Pascal/MT+. However,

Pascal/MT+ does provide the standard heap management func-

tion DISPOSE for returning individual segments of the heap.

Also in the attempt to keep the code as close to its origi-

nal form, a function called GOTOXY was implemented. This

function is a function provided in UCSD Pascal but not

provided in Pascal/MT+. It is included in a group of screen

manipulation functions that are CRT dependent and have to be

modified for each different type of CRT used. These func-

tions are included in the module COMON4.

The functions, procedures, and features described a-

bove, describe some of the unique elements of Pascal/MT+ . -

that were encountered during the development of the rela-

tional database system. Also, some functions that were

implem ed to make Pascal/MT+ more closely resemble UCSD

Pascal were briefly discussed. These features were dis-

cussed to attempt to make the code used more understandable

to a person who has never used Pascal/MT+.

97

~ . , .'.



Appendix B: B-tree Access Structure Concept

The B-tree is a generalization of a binary search tree

that was introduced in the late 1960s. The B-tree of order

m is a m-way balanced search tree. To be a B-tree it must

also meet the following conditions:

1) The root is either a leaf or has at least two

children.

2) All nodes other than the root and the leaves must

be at least half full.

3) Each path from the root to a leaf must have the

same length.

There are many forms of B-trees but one common name for a

variation of the B-tree is B*-tree.

The specific form of B-tree used in the AFIT relational

database is called a B+-tree. There is much confusion about

the names of various forms of B-trees so sometimes it is

referred to as a B*-tree but a B*-tree requires that each

node be at least 2/3 full, not just 1/2 full. The concept

of the B+-tree is that all the keys reside in the leaves.

This means that the upper levels of the B+-tree consist only

of an index to the leaves.

The advantage of the B+-tree is that the upper levels

enable rapid location of the index and key parts. But it

also allows the leaves of the tree to be linked through the -

use of next or previous pointers to allow a sequence set.

98

......................... .



This means that for random access to an individual key the

index can be used to provide the key quickly but if the

complete set of keys needs to be processed sequentially, the

sequence set can be used to access the keys sequentially.

These two features combined provide a very powerful indexing

method. Figure B-i shows an example of a B+-tree.

t,101,120 .6d

Figure B-I. Example of a B+-tree

The concept of the B+-tree used in the AFIT relational

database also included the idea that each key in a leaf

point to another record called a leaf page that contains all

the information about the key. In the relational database,

the information about the key is all of the TIDs of the

99



crocomputer. This was accomplished by implementing the

access structure concept, the relation edit functions, and

the limited set of relational operators using Pascal/MT+ on

a 64K CP/M computer. Although the system is operational, it

is currently limited in its effectiveness by a lack of

memory space in the computer. In spite of the limitations,

the AFIT relational database does provide a valuable peda-

gogical relational database management system for future

student research.

References

1. Kearns, Capt Timothy G. Implementation and Analysis of
a Microcomputer Based Relational Database System, MS
Thesis AFIT/GCS/ENG784D-12. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1984.

2. Rodgers, 2LT Linda M4. The Continued Design and
Implementation of a Relat-ional Database System, MS
Thesis GCS/EEi82-29. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982 (AD-A124 927).

3. Roth, 2LT Mark A. The Design and Implementation of a
Pedagogical Relational Database System, MS Thesis
GCS/EE/79-14. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1979 (AD-A080 240).

4. Smith, John Miles and Philip Yen-Tang Chang,
"Optimizing the Performance of a Relational Algebra
Database Interface," Communications of the ACM, 18:
568-579 (October 1975).

113

,i''[. *:.-[ ..- ....-.. '.-..-[. .. ..-. .. . ....., -. . '. - -.--.---.-- --. -, .- ,--.-... ......... .



The JOIN operator is a combination operator. This

means that it selects tuples from two input relations and

combines the tuples to form a tuple of the result relation.

The selection criteria of the JOIN operator allows the two

input relations to be joined where the designated attributes

are equal, less than, or greater than. This me-ins that the

attributes from each input relation must be defined on the

same domain. Also, the JOIiN operator does limit the cri-

teria to be a single condition.

The JOIN operator uses the first attribute in the

selection criteria as a control. This means that for each

attribute value of the first relation all attribute values

of the second input relation are compared. If the values

compared satisfy the selection criteria, the tuple from the

first relation and the tuple from the second relation are

combined to form a tuple of the result relation. The tuple

is then inserted into the result relation file and its

attribute values inserted into the proper access structures.

This method of using one value as a control eliminates

introducing duplicate tuples in the result relation; thus,

tuples inserted into the result relation during the JOIN

operation do not have to be checked to see if they are

duplicates.

Summary

The purpose of the research described was to provide an

operational relational database management system on a mi-

112

.~ . .. . . .



Implementation of the Relational Operators

The relational operators that were implemented are

PROJECT, SELECT, and JOIN. These are the basic operators of

relational. Other operators in the relational algebra are

PRODUCT, DIFFERENCE, UNION, DIVIDE, and INTERSECTION. These

operators are to be implemented at a later date.

The PROJECT operator takes only selected attributes of

a relation to make a new relation. To implement this func-

tion each tuple is read from the relation file. The select-

ed attributes of the tuple are read, and the values of the

selected attributes are combined into a new tuple. The new

tuple is then inserted into the result relation file and

each attribute value inserted into the appropriate access

structure. The access structure is not used to find the

TIDs of the input relation because the order in which the

relation is processed is not critical as long as each tuple

of the relation is processed.

The SELECT operator selects only specified tuples from

a relation and uses the selected tuples to create the result

relation. The implementation of the SELECT operator uses

the criteria evaluation procedures of the delete function

of the relation edit functions to produce a list of TIDs

that identify tuples that satisfy the selection criteria.

Then each tuple is accessed using its TID. The tuple is

then inserted into the result relation and each of the

attribute values is inserted into the access structure with

the TID from the result relation.

1:11:



Then each attribute value with the tuple's TID is inserted

into the access structure of its domain.

The deletion function receives a list of criteria used

to select tuples to be deleted. This list evaluates each

criterion individually by searching the appropriate access

search for TIDs that satisfy the condition. The TIDs that

satisfy the condition are then placed in a linked list. As

each criterion is evaluated, the previous linked list of

TIDs is either combined with the new list by "anding" or

"oring" the lists. After all the criteria have been eval-

uated the remaining linked list of TIDs identifies the

tuples of the relation to be deleted.

Each tuple identified is then read from the relation

file and flagged as deleted in the relation file. Also,

each attribute value of the tuple is used to delete the

attribute value and TID combination from the access

structure.

The final edit function is the modify function. It

combines both the operations of the delete and insert func-

tions to find the tuples to be changed, reads the tuple,

changes the necessary values of the tuple, replaces the

tuple in the relation file, deletes the attribute values

that are going to be changed from the access structures, and

inserts the changed attribute values into the appropriate

access structures.

110



checking to see if the user is the owner of the relation

involved and if the user is not the owner, the system re-

quires the user to provide a correct password before contin-

uing. Once the user has passed the security test, the

function has the user interactively build a list of tuples

to be inserted, a set of criteria used to select tuples to

be deleted, or a set of criteria used to select tuples to be

modified with a list of the modification values.

The insert function considers each tuple to be inserted

individually. It first retrieves the names of the attri-

butes that form the key for the relation from the data

dictionary. It takes the values of the key attributes, in

the tuple to be inserted, and searches the access structure

to see if that value exists in a tuple already in the rela-

tion. If the value does exist in a tuple or tuples of the

relation, then the TIDs of the tuples are read from the--

access structure and formed into a linked list. This is

repeated for each attribute in the key. The linked lists of

TIDs for each attribute of the key are then compared. If

any TID appears in every list the tuple to be inserted is a

duplicate and will not be inserted.

After the tuple to be inserted is determined not to be

a duplicate tuple, it is first inserted into the relation

file. The insertion into the relation provides the TID for

the tuple. The TID consists of the filename for the rela-

tion, the block number in the file where the tuple's data

starts, and the offset in the block where the tuple starts.

109

- .- * .*~-..a . ".t C -



Implementing the Leaf Structure

The design of the leaf structure considered the amount

of disk space necessary, the number of disk accesses

necessary, and the efficiency of inserting and deleting

information from the structure. The resulting design was

not the most efficient in any one area but time efficiency

was the main consideration used.

The leaf structure provided for each leaf to contain

key values and associated with each key value a pointer to a

block in the file that contained all the tuple identifiers

(TID) for that value. Leaf page was the name used for the

blocks, that contain the TIDs, referenced from the leaves.

Therefore each key in a leaf points to a leaf page where the

TIDs for that value are stored. In order to provide sequen-

tial processing, the leaves were connected with previous and

next pointers to provide a linked list of leaves. The key

values in the leafs were also placed in a physical ascending

order. The TIDs in the leaf pages are also maintained in an

ascending order based on the ID of the relation and ID of

the attribute within the relation. This ordering provides

for more efficient searching of the leaf pages.

Implementation of the Relation Edit Functions

The relation edit functions include inserting tuples in

a relation, deleting tuples from a relation, and modifying

attribute values in existing tuples of a relation. The

first step of each edit function insures the security by

108

. ....... ............................ 

. .



method suggested by Smith and Chang (4).

The basis for the relational database system was de-

fined by Roth but the system still lacked the design and

implementation of the necessary indexing or access structure

to become an operational database management system. Linda

M. Rodgers continued the development of the system by de-

fining an access structure (3).

The access structure defined was based upon a B-tree

structure to provide an index. It was defined that there

would be a B-tree for each domain defined in the data dic-

tionary of the system. Thus all attributes defined on the

same domain would have their values indexed in the same B-

tree. The B-tree would be a special type of B-tree where

all the upper levels of the B-tree would just provide an

index to the leaves where all the keys would be located.

The leaves would then somehow indicate how to find the

tuples that contained that attribute value. The index por-

tion of the B-tree was implemented by Rodgers but the design

of the leaves and how they should reference the tuples was

undefined. The following paragraphs describe the design and

implementation of the leaf structure, the implementation of

the relation edit functions, and the implementation of the

relational operators to provide a operational microcomputer

based relational database system (1). All of the

implementation described was accompilshed in Pascal/MT+ on a

64K CP/M system.

107



Appendix D:

The Implementation of a Microcomputer

Based Relational Database System

E. F. Codd first introduced the idea of utilizing the

relational concept for data in 1970. Since that time, much

has been written about the theoretical concepts of the

relational view. Not only have the theoretical aspects of

the relational view been studied but also the practical

aspects have been widely researched. The advent of the

microcomputer caused a demand for a relational database

system that will run efficient-ly on this type machine.

Therefore, in 1979, Mark A. Roth started the design and

implementation of a relational database system for a

microcomputer (2).

The intent of Roth's research was to provide a pedagog-

ical database for student use at the Air Force Institute of

Technology. The need for such a teaching tool to aid in the

learning experience of database students had been identified

by Dr. Thomas Hartrum of the AFIT/EN Electrical Engineering

faculty.

Roth considered many key aspects of the relational --

database in his design and implementation. Some of these

aspects were the means for data definition and data manipu-

lation. The data manipulation research included selecting

relational algebra as the basis for querying the database

S.. and designing a method of optimizing queries based upon a

106

.........................



AtLINKMT SPOS=SPOS/O:26,SPLIT,A:PASLIB/S/P:5000
AsLINKMT SPOS=SPOS/0:27,GETTUP,AzPASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:28,OPT4,AzPASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:29,OPTIMIZE,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:2A,PROJ,A:PASLIB/S/P:5000
AtLINKMT SPOS=SPOS/0z 2B, SELECT,AzPASLIB/S/P.5000
A:LINKMT SPOS=SPOS/0: 2C,TRANSFER,A:PASLIB/pS/P: 5000
A:LINKMT SPOS=SPOS/02D,JOINEQ,A PASLIB/S/P,5000
A:LIHKMT SPOS=SPOS/0:2E,JOINLT,A:PASLIB/s/P:5000

The SPOS program has a library of run-time routines.

This library is named GETLIB and was used in some of' the

previous link commands. The library is contained in the

file GETLIB.ERL. The routines used to build the library are

contained in the following files:

GET1.PAS GET2.PAS GET3.PAS GET4.PAS
GET5.PAS GET6.PAS GET7.PAS GET8PAS
GET9.PAS GET1O.PAS GET11.PAS GET12.PAS.

To create the library each of the .PAS files is compiled to

produce .ERL files. Then use the following command to

create the library.

A:LIBMT GETLIB

This command uses a file named GETLIB.BLD as an input.

GETLIB.BLD tells the library manager the name of the result-

ing library and what .ERL files are to be read to create the

library. The library when created is linked with any mod-

ules that call for a procedure contained in the library.

The advantage of using the library is the fact that only the

necessary procedures are linked. This means that unused

procedures are not linked which conserves memory space.

The procedures described above briefly describe the

files and procedures necessary to modify the AFIT relational

database system. _

105

.......



modify the code in the appropriate module and recompile that

module. Then only that module needs to be relinked. The

only time it is necessary to relink the complete set of

modules is when a modification is made to SPOS.PAS or

COMON4.PAS. The following list provides the commands neces-

sary to relink the complete SPOS system. If an individual

module is to be relinked just use the one command that

contains the appropriate filename for the module.

Commands to link SPOS

A:LINKMT SPOS,COMON4,A:ROVLMGR,A:FPREALS/S,A:PASLIB/S/D:8000
/X: ji0o/vi :5000

(Links main segement of program. Following link overlays)
A:LINKMT SPOS=SPOS/0: 1,SETUP,A:PASLIB/S/P:5000
Az.LINKMT SPOS=SP0S/0:2,INVENT,A:PASLIB/ /P.-5000
A:LINKMT SPOS=SPOS/O:3,USRET1,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:4,USEDIT,GETLIB/S,A:PASLIB/S/P: 5000
A:LINKMT SPOS=SPOS/0:5,QUIT,A:PASLIB/S/P:5000
A:LINKMT SP0S=SPOS/0:6,PUTINB,GETLIB/S,A:PASLIB/S/P:5000j ~ A:IINKMT SPOS=SPOS/0;7,DELETE,GETLIB/S,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:8,LEAFDL,A:PASLIB/S P:5000
A:LINKMT SPOS=SPOS/0: 9,DISPLAY,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:A, SELLIST,GETLIB/S,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:B,INDELMOD,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:C,DUM3,A:PASLIB/S/P:5000

jA:LINKMT SPOS=SPOS/0:D,SIMSEL,A:PASLIB/S/P:5000
A:LINKMT SPOS=SFOS/O:IE,OPT1,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:F,OPT2,A:PASLIB/S/P:5000
A:LINKMT SP0S=SP0S/0: 10,OPT3,A:PASLIB/S/P:5000
A:LINKMT SPOS=SP0S/0: 11,OPT5,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0: 12,OPT6,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:113,DUM4,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0: 14,RUN,A:PASLIB/S/P:5000
A:LINKMT SPOS =SPOS/0: 16,TIDINS,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0: 17,IDEL,FINDLEAF,GETLIB/S,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0: 19,IEDIT,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:1A,IEDIT2,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:lC,EMPTY,GETLIB/S,A:PASLIB S/P:5000
A:LINKMT SPOS=SPOS/0:1D,FULL,GETLIB/S,A*PASLIB S/P:5000
A:LINKMT SPOS=SPOS/0: 1E,FREE,GETLIB/S,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:21,INSTUP,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:22,TIDS,A:PASLIB/S/P:5000
A:LINKMT SP0S=SPOS/0s23,TIDFIND,A:PASLIB/S/P:5000
A:LINKMT SPOS=SPOS/0:24,LEAFS,A:PASLIB/S/P:5000
A:LINKMT SPOS SPOS/0:25,LEAFFIND,A:PASLIB/S/P:5000

104

--------------. . . . . .



FPREALS and PASLIB are libraries of run-time procedures

provided with the PASCAL/MT+ system. The linker will read

the .ERL file of each file named and link them into a pro-

gram named DBMGR.COM. Then to execute the program the user

need only type DBMGR in response to the CP/M operating

system prompt.

SPOS Modification

SPOS is the program that provides the data manipulation

for the AFIT relational database system. The SPOS program

is actually many modules that are linked in a special way to

provide numerous overlays. The following is a list of the

necessary files:

SPOS.PAS COMMON.DEC COMMON.PRC
DELETE.PAS DISPLAY.PAS DUM3.PAS
DUM4.PAS EMVPTY.PAS FIXFIELD.PAS
FREE.PAS FULL.PAS FINDLEAF.PAS
GETS.PAS GETTUP.PAS IDEL.PAS
IEDIT.PAS IEDIT2.PAS INDELMOD.PAS
INSTUP.PAS INVENT.PAS JOINEQ.PAS
JOINLT.*PAS LEAFDL. PAS LEAFFIND. PAS
LEAFS.PAS MANNODE.PAS OPT1.PAS
OPT2.PAS OPT3.PAS OPT4.PAS
OPT5.PAS OPT6.PAS OPTIMIZE.PAS
PRINTREE.PAS PROJ.PAS PUTINB.PAS
QUIT.PAS RUN.PAS SELECT.PAS
SELLIST.PAS SETUP.PAS SIMSEL.PAS
SPLIT.PAS TIDFIND.PAS TIDINS.PAS
TIDS.PAS TRANSFER.PAS USEDIT.PAS
USRET1.PAS

The following files are not necessary for the system at

this time but contain the code for the coordinating operator

constructor:

DUM5-PAS PETEO.PAS PETE1.PAS
PETE2.PAS PETE).PAS PETE4.PAS

To modify the SPOS program it is only necessary to

103

. . . . . . . .



Appendix C: Modifying the AFIT Relational Database

The AFIT relational database consists of two separate

programs, the DBMGR program and the SPOS program. DBMGR

provides the data definition facility and SPOS provides the

data manipulation. The following discussion will tell how

both programs can be modified.

DBMGR Modification

The DBMGR program consists of five modules that are

linked together to form the complete program. Each module

is contained in a file and must be compiled before it is

linked. The following are the names of the necessary files:

DBMGR.PAS COMON4.PAS DBDUMI.PAS
DBDUM2.PAS QUIT2.PAS COMMON.DEC
COMMON.PRC

The files COMMON.DEC and COMMON.PRC are included in the

list of necessary files because these files are "include"

files for all of the modules. They provide the definition

of the necessary data structures used in the code.

To modify the DBMGR program, find the module that needs

to be modified and perform the modifications to the file.

Then compile the module. The compilation will produce a

*.ERL file. This is a relocatable object code file. Before

the modules can be linked to provide the DBMGR program a

*.ERL file is needed for each *.PAS file. After all of the

modules are successfully compiled, the following command is

used to link the modules to create the DBMGR program.

A:LINKMT DBMGR,COMON4,DBDUM1,DBDUM2,QUIT2,A:FPREALS/S,A:PASLIB/S

102

.. ' r-.. .... .....-. .................,.:'... -- -,""- -- -, ,"-- --. '. .-..... .-.. '.., . ..



The combination of the B-tree and leaf page structure

means that all the attributes defined to be of a certain

domain have their values stored in a common access

structure. This also means that each dLrnain defined has

its own access structure associated with it except if

the domain is defined to be of type, text. Since every

attribute value (except those defined to be of domain type

text) is stored in an access structure a tuple of relation

can be found using any of its attributes not just the key

attributes as in some database systems.

101

.. . . . . . . . . . . . .."

.. .. .

. . . . . . . . . . . . . . •



T

Ki tuples that the contain an attribute with the value of the

key. The B-tree - leaf page structure is called the access

structure in this document. Figure B-2 contains an example

of the access structure.

B-tree

400

Pa 1 Pag 7
Pointers to Leaf Pages

Leaf Pages

Page 1 l 2 - Att 1- Tuple 4 Rel 3 -Att -Tule6

I[ I e 1 8 - A tt ) - T ule 23-

Page 2 el 5 - At 3 -Tule

Page 3 el 3 - -A3t -IuAfe 4

* ."Figure B-2. Example of the Access Structure

100- --............................................



Bibliography

.1
1. Haerder, Theo. "Implementing a Generalized Access Path

Structure for a Relational Database System," ACM
Transaction on Database Systems, 3: 285-298 (197).

2. Mau, James D. Implementation of a Pedagogical
Relational Database System on the LSI-11 Microcomputer,
14S Thesis GCS/EE/81D-13. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1981.

3. Kim, Won. "Relational Database Systems," Computing
* Surveys, _11: 185-211 (September 1979).

4. Raeth, Peter G. An Implementation of a Co-ordinating
Operator Constructor. School of Engineering, Air Force
Institute of Technology. Wright Patterson AFB, OH,
1979 Unpublished Project Report.

5. Rodgers, 2LT Linda M. The Continued Design and
Implementation of a Relational Database System, MS
Thesis GCS/EE/82-29. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982 (AD-A124 927).

6. Roth, 2LT Mark A. The Design and Implementation of a
Pedagogical Relational Database System, MS Thesis
GCS/EE/79-14. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1979 (AD-A080 240).

7. Smith, John Miles and Philip Yen-Tang Chang,
"Optimizing the Performance of a Relational Algebra
Database Interface," Communications of the ACM, 18:
568-579 (October 1975).

1

i 114



Vita

Timothy G. Kearns was born on 11 September 1952 in

Rushville, Nebraska. He graduated from high school in

Rushville, Nebraska in 1970 and attended Chadron State

College, Chadron, Nebraska. He received a Bachelor of

Science in Math Education in 1974. He completed OTS in

September of 1979, receiving a commission in the United

States Air Force. From October of 1979 through May of 1984

he worked at HQ AFLC, Wright-Patterson AFB, Ohio, as a

computer programmer and software engineer. He entered the

School of Engineering, Air Force Institute of Technology, in

May 1983.

Permanent address: HC 65, Box 77

Rushville, NE 69360

115
ii 1



SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
.a R EPORT SECURITY CLASSIFICA1 ION lb. RESTRICTIVE MARKINGS

__ __ _ __ __ _ __ _ __ __ _ __ _ __ __ _ __ _ _ __ _ __ __ _ __ _ __ __ _ __ _ __ __ _ __ _

* 28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT

2b DELASIFIATIN/DWNGADIG SHEDLEAnnroved for nublc release;
2b OCLASIFCATON/OWNRADNG CHEULEdi stri but ionl unlimited.

* 4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUM8ER(S)

A~T~~~1/4 -12 _______

6a. NAME OF PERFORMING ORGANIZATION 16.OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Itfappirfcable)

School of 7,ngineerin7 jAFTT/ET\G ____ _______________

6c. ADDRESS WCily, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

61 Air 1'orce Trstitute of Technology
W,'ripchtPatterson AFB, Ohio 45433

So. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORG4NZAI(if applicable)

* Be ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

3riffiss AFB, New York 13441 ELEMENT NO. NO. NO. NO.

11, Ti TLE (Include Security Classification)

See Box 19 ______

27. PERSONAL AUTHOR(S)

Timothy ". Kearns, -B.S., Capt, USAF-

P-S Thesis 1_FROM ___ TO ____ 84 Dec12

17 COSATI CODES 18. U JECT TERMS (Continue on reverse if necessary and identify by block numberl i-

01) 0 Access Structure Des ign, Data Management. Uu r.
Relational Operators, Management Tnfo Systems.<--

19. ABSTRACT (ContIinue on reverse if necessary and identify by block numbero

Title: TMPLEMENTATTON1 AND ANALYSTS OF A MICROCOMPUTER
BASED RELATIONAL DATABASE SYSTEM AfPevrsd for ble!e c

Thesis Advisor: Dr. Thomas C. Hartrum

A1 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

-. UNCLASSIFIED/UNLIMITED EX SAME AS APT. 0 OTIC USERS 0 UINCLASSIFIED

* 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

Thomas C. lartrum, Ph.D. 513-25-3576 AFIT/ENG
DD FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASS IFIED

SECURITY CLASSIFICATION OF THIS PAGE



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

S. .
The single processor optimized relational database system

is a database system designed and implemented for teaching
and research purposes at the Air Force Institute of Technology.
The system was originally designed and partially implemented_-

by Mark A. Roth in 1979. The design and implementation was
ontinued by James Mau in 1981 and Linda M. Rodgers in 1982.
complete the implementation of the relational database system

an investigation of the design and implementation of the pre-
vious research efforts was done. Additional research was
done to explore possible designs and implementations of access
structures and possible methods to implement the relational
operators.

With this background, a structured design was completed
for the access structure and the relational operators. Once
this was accomplished, the low level access structure was
implemented and tested, providing the capability to insert,
delete and modify data in the relational database system.
Finally, some of the relational operators were implemented
and tested providing an operational relational database system.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

......................................................................................................

.................................................................................. ...

. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . .



FILMED

4-85

DTIC


